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Abstract—We propose a novel method for movement assistance all wearable devices need to face the crucial issue of the
which is based on adaptive oscillators, i.e. mathematical tools that human-robot interface [8].
are capable to extract the high-level features (amplitude, fre- Ideally, the user should fully control the robot in order to

guency, offset) of a periodic signal. Such an oscillator acts like a . . . . . .
filter on these features, but keeps its output in phase with respéc have it synchronized with his/her intentions and, consetiye

to the input signal. Using a simple inverse model, we predicted the t0 benefit from the supplied assistance while performing the
torque produced by human participants during rhythmic flexion- movement. A common strategy for the human-robot interface
extension of the elbow. Feeding back a fraction of this estimated js the so-called “Shared control” [9]. This approach alldas
torque to the participant through an elbow exoskeleton, we were ghare the cognitive effort needed to control the platform be
able to prove the assistance efficiency through a marked decreas tw th dth troll fth bot. A

of the biceps and triceps EMG. Importantly, since the oscillator een e u_ser an € C_0n rofier ot the robot. As cons_e(menc
adapted to the movement imposed by the user, the methodsthe user is interfaced with the robot through some h|gh|'|eVe
flexibly allowed to change the movement pattern and was still commands, that are interpreted and then executed by th& robo
efficient during the non-stationary epochs. This method holds  |n the case of wearable robots assisting limb motions,
promise for the development of new robot-assisted rehabilitation these high-level commands must specify the charactesistic

protocols because it does not require pre-specifying a reference . . . . .
trajectory and does not require complex signal sensing or single- (e.g. direction, velocity, amplitude) of the intended mmet.

user calibration: The only signal that is measured is the position !deally, the robotic platform should detect the user motion
of the augmented joint. In this paper, we further demonstrate intention and react timely to provide the specific assistanc

that this assistance was very intuitive for the participants who needed by the user in terms of direction and absolute value.
adapted almost instantaneously. At the same time, the learning ability of humans plays a
Index Terms—adaptive frequency oscillator, motor primitive, fundamental role in achieving human-robot synchrony. For
adaptation, human-robot interaction, flexibility, assist-as-needd instance, humans can re-modulate their muscle activation
patterns in order to cope with and exploit the extra-torque
provided by the robot [10]. In this way the user reduces kis/h
I. INTRODUCTION effort without loosing control of the movement. For these
. . _reasons, the analysis of human-robot interactions regjtiire
O NE of the most challenging ams of modern robotics igyestigate the cross adaptation of the two partners: Thetro
to improve the quality of humans’ daily life [1]. In order 5gapts its behavior to the user intentions (i.e. movemeat-ch
to accomplish such an ambitious task, robots should Couperécteristics), who in turn adapts his/her behavior to optmi
in synergy with humans while working in direct contacthe collaboration with the robot.
with them. This concept is well exemplified with powered A possible way to detect the user intention is through a
exoskelgtons, wearable robots designed to assist humales Whirect interface with the central or peripheral nervoustesys
performing movements [2], [3]. [11], [12], as demonstrated on primates to control a mufi-d
Exoskeletons can be used to increase the performance;¢Hotic manipulator [13]. Furthermore, nerve intra-néetac-
healthy persons (i.e. human augmentation robotics) [41¢40 trodes were successfully used to control a hand prosthigs [
train the nervous system of people suffering after strole (iowever, these strategies are highly invasive and impltilts
rehabilitation robotics) [5], [6], or to assist people afied by |5ck in duration and reliability [15].
chronic movement disorders or neural lesions (i.e. assisti considering less invasive approaches, a large number of
robotics) [7]. Each of the aforementioned applicationsin®] MG based controllers were proposed in the past years to
a specific robotic platform and control scheme. Nonethelegftect the user motion intention for the control of exosiaeie

_ _ _ 416], [17]. These systems correlated the user's EMG with the
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Fig. 1. Sketch of the synchronization between the human failitow in a() | estimator | o), 4() | estimator |u (), o (r)| OSCillator
this case) and an adaptive oscillator. The oscillator fdmtk some torque a() oat)
ue(t) to the controlled joint.

Fig. 2. Block diagram of the integrated system (human + eXetie). Each
black box is detailed in the text. The shaded area (human wellypamics)

. . . .. does not need to be explicitly modeled.
have some drawbacks, mainly related to signal acquisition,

and user-specific calibration. Electrode positioning, adl w

as skin conditigrlc/,l Ggrbeatly d affects"the recorded sign?l. Also%cillator—based assistance strategy decreases the laffodn
consequence, EVI-base controllers require r_u_)t only a O{?ﬁ the participant always keeps the control of the highelev
custom calibration for each user but also additional calibr arameters (namely movement amplitude and frequencyl, suc

tions between and within e>.<perimental sessions. Moreovg{ t the assistive device flexibly adapts; and (iii) our apph
model-based torque estimation can have poor accuracy 7@auires few user-specific tuning or calibration and isitiviel

requires large computational effort. for the user. Preliminary results were submitted to a camnfes

In_the present paper, WE propose an alterna_tive method_ /5]. The present paper provides the first experimentalltesu
providing movement assistance during rhythmic tasks whi tablishing the adaptive behavior of our algorithm, amthér

prgdlcts the moyement_trenc{ dlregtly frpm the jointKineltgat oapjishes the statistical significance of all resultsluiing
This approach is non-invasive since it does not rely on any,

recording of neural commands to the muscles. The only signa?re participants.
that needs to be measured is the assisted joint position. Our
method is based on synchronization, a ubiquitous phenomeno II. METHODS
in systems biology [21]. Here, synchronization is suppadsed
happen between two oscillators: A neuromechanical osmillaA. Assistance using adaptive oscillators
actually driving the moving joint, and an artificial osctiba
providing assistance (Figure 1).
The neuromechanical oscillator consists of the limb m

Human assistance is provided through an exoskeleton being
controlled by an adaptive oscillator [27]. This oscillatier

hani d th | circditactuating it. Th ificial fised as state observer (or estimator), in the sense that it
chanics an € neural cireuitmctualing 1. the artiliclal 5 jike a filter to smoothen and anticipate the evolution

counterpart! providing assmtapce, is based on an addpmwe of the corresponding joint state. Unlike conventional féte
quency oscillatdh, a mathematical tool developed by nghenfhis adaptive oscillator is however able to predict an esmstiEm

et al. [27] for variou; applications [.28]: resonance tuningf the state evolution (and the evolution of higher order
[gi]’ f;ezquincydanal_yss [33}' and_ on-line Iea(rjmng ngﬁ;n_ derivatives) inreal-time i.e. without delay with respect to
[31], [32]. An a a_ptlve oscl gtqr IS expressed as a dynamiCy,, \,a55ured output. This is due to the fact that the filter
system characterized by a limit cycle whose features (phaggsumeS the signal to be periodic, i.e. repetitive. Imptigta
frequency, amplitude,...) are changed in adaptation to '

; | inout. ie. th t ki tics i thi fifls filtering oscillator is currently designed to work orflyr
external input, 1.e. the movement kinematics in tnis CasSuasi—sinusoidal signals, and would not work properly with

Thefrefore(zj, it reflectst the real-time user intention abowt th, . profiles (see [31], [32] for adaptation to non-sindabi
peh?”“e mo"zme” rod has b ed orimariy fReriodic profiles). Finally, the fiter continuously adafits
e proposed method has been conceived primarily anges in the input signal features, namely the movement

aSS|stan_ce of the lower leg, given the periodic fe?t“fes ase, frequency, amplitude, and offset, in the case of a
locomotion tasks. Nevertheless, in this study, we will foc Inusoidal input

on a proof of concept of our approach, i.e human cyclica In this study, we focus on the assistance of a simple

movements about the elbow in the upright position. Theeefor .
: one degree-of-freedom human joint, namely the elbow. The
the model presented here does not have to deal with copl-

plex dynamics due to multi-joints coordination or to impact ndamental building blocks of the coupled system (human

with the ground, ubiquitous in locomotion. Note howeve(raIbOW + exoskeleton) are depicted in Figure 2 and described
in the paragraphs here below.

that this elbow configuration mimics the inverse-pendulum
a) Human central nervous system (CNSJhe human

configuration of legs during the stance phase of walkin inthe | i ord he elb h
[33]. The present paper mainly establishes that (i) using jts In the loop in order to steer the elbow movement to matc
with an intended movement (i.e. a sinusoidal movement with

1possibly based on a spinal Central Pattern Generator (C®@jseussed @ SPecific amplitude and frequency in this case). Impoantl
for the lower [22] and upper extremities [23]-{26]. an explicit model of this controller, or of the sensory signa
2For br_evity, we will simply refer to this as aadaptive oscil_latorin the being used, is not required for our application. We simply
rest of this paper. Furthermore, the dynamical system useldisrpaper has . .
the intrinsic capacity to adapt not only its frequency buoaits amplitude assume that the human prowdes a tor%ét) in order to
and offset, making the termdaptive oscillatormore generic. move the controlled joint.
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o where the amplitudey; and the offsetyy can be learned by

integrators:

o
N

position [rad]
o

ao(t) = nk(t),

at) = nx(t)F(), (4)

= s with ) being the integrator gain. Due to the intrinsic dynamics,
the oscillator time constants are characterized by thesgain

o
N

I
~
1T

©
T

©
T

frequency [rad/s]

7t andr. ldeally, these gains should by high enough to smoothly
ol - . . . . and rapidly drive the oscillator adaptation, but low enough
2 i 0 el 2 3 4 to avoid stability issues. In the present experiment, weduse

v =20 andn = 5, as found after pilot tests. Figure 3 shows
Fig-_”3- _Example of tg‘e Ojc”'atolf_'s af]ff';‘ptation dﬁ'”amcijiis- Teﬁ"qii The .an example of the oscillator behavior. At timte= 0, the
input (1) (sold black ine). L. 3 requency siep &t 0. Bottom panel: TPUL frequency changes. This change is filtered out by the
Corresponding evolution of the learned frequendy). oscillator, which eventually resynchronizes with the napit.
The new frequency is learned via the dedicated state variabl
w(t), as shown in the bottom panel. Changes in amplitude and
b) Elbow dynamicsThe elbow dynamics block maps theoffset give rise to similar adaptation of the corresponditage
input torque to an output trajectory, therefore integtihe variables.
different forces acting at the joint level. Again, this btois Assuming that the actual input signal is (quasi-)sinudpida
not explicitly processed in our algorithm, but rather cagsu the state estimator block easily provides a zero-delay $moo
the mechanical dynamics of the elbow. An inverse model ektimate of the input signal (3), but also of its velocity and
this block will be detailed later in this section. acceleration:
c) Adaptive oscillator: The adaptive oscillator block is 5 _
directly adapted from [27]. It is a system of differential ‘Z(t) = aHwty®), ©®)
equations based on a Hopf oscillator, i.e. a two state viasab 0(t) = —oa(t)w(t)z(t).
(z(t) andy(t)) oscillator having a limit cycle attractor when 4y Torque estimator:We assume that the elbow dy-

>0 and~y > 0. Moreover, the Hopf oscillator can reach %hamics can be captured with a simple pendulum model,
phased-locked regime with respect to a periodic inB):  74i(t) = —mgl sin 6(t) — b(t) + u(t), wherel [Nms*/rad], m

P — — (2()? 0?2 " Dult Flt [kg], and [m] denote respectively the forearm-+hand inertia,
1?( ) v (1 — (e )2 +y( )2)) () +w(t)y(t) + v (), mass, and equivalent length;[Nms/rad] denotes the elbow
g(t) = (= (20 +y(0)7%) y(t) - w(B)z (). () viscous damping constant;— 9.81m/s2 denotes the constant

In (1), w(t) [rad/s] is the oscillator’s intrinsic frequency; apd ©Of gravity; and 6(t) [rad], 6(t) [rad/s], and6(t) [rad/s]
and~ determine the oscillator's amplitude and the attractivitfenote the elbow angular position, velocity, and acceterat

of the limit cycle, respectively. In the present experimem¢ respectively. Finallyu(t) [Nm] denotes the input torque that
usedp = 1 (such that the oscillator's intrinsic amplitudelS applied at the elbow joint, both by the user(¢) and by
equals one) andy = 8 (like in [27], [32]). The learning the assistance device.(t), i.e. u(t) = un(t) + uc(t). Note
parameter determines the speed of the phase synchronizatiBit the assistance device mass, damping, and inertia were n
with respect taF(¢). In [27], this oscillator was augmented toconsidered in this model, assuming the robot is transpacent
learn the frequency of the input sign(¢), using an integrator the user. _ _ _ _

whose argument sums up to zero over one peridé(#) and The torque estimator block S|rr_1ply retrieves an estimate of
y(t) have a phase-lag ad0° (i.e. if F(t) and z(t) are in the total torquei(t) based on an inverse dynamical model of

phase): the elbow, i.e.:
w(t) = z/F(t)% @) a(t) = mglsin O(t) + bé(t) + Ié(t). (6)

V)2 +y(t)? . . . . .
Finally, a fraction of this torque is fed back to the user Via t
In the present paper, we moreover implemented a mechanig&istance device, i.e.:

to reset the integrator (2) if ever it would be attracted by th

movement offset, i.e. the zero frequency. Practically, eset ue(t) = wa(t), ™
w to 27 if w < 0. Visual inspection of the data revealed thavith the level of assistandé < x < 1. Assuming a stationary
this happened very rarely. sinusoidal movement and a perfect inverse dynamical model

Finally, [31] proposed to use this building block to learr{6), such thati(¢) = u(¢), the total torque should emerge from
the parameters of a sinusoidal input by using the differeneecollaboration between the user (performitg(1 — )% of
between the raw signdl(t) (i.e. the elbow position measuredthe effort) and the assistance device (performifgx% of the
by the exoskeleton joint encoder in our case) and the estimagffort). In theory, the stability limit of the assistive dooller
(or learned) signall(t) as input, i.e.F(t) = 0(t) — 6(t). The should be reached at= 1. However, in practice, pilot tests re-
estimated signal is simply the oscillator output plus arseiff vealed discomfort (like undesired high-frequency ostdlas)
term, i.e.: for x higher than aboud.6, likely due to neglected dynamics

0(t) = ao(t) + o (t)z(t), (3) and/or approximations in the inverse model identificatioh (
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with a lightweight double-shell structure, providing a wid
comfortable interaction surface. (iii) NEUROEXos is poactr

by two antagonist actuators, each composed by a contractile
element (hydraulic piston) in series with a non-linear tdas
element. The actuators powered the NEUROEXxos joint by
means of steel wire ropes passing through Bowden cables. The
force transmitted by each antagonist tendon-cable is ddmse
custom force sensors located close to the joint. Becaude eac
antagonist unit works as a series-elastic actuator, it vess p
sible to exploit the force sensors to develop two independen
closed-loop force controllers [40]-[44]. The force colis
permitted to control the assistance torqugt), with a -3dB
bandwidth of about 15 Hz while providing the NEUROEXxo0s
with an active back-drivability. The NEUROExos sensors
provided measures of the joint (elbow) absolute positiod an

Eight healthy right-handed participants took part in the exhe force transmitted by each tendon cable.

periment (aged 26-31, weight 51-73, three female, five male) |n order to monitor the participant's effort associatedhwit
None of them ever experienced the oscillator-based prbtoggovement performance during all conditions, we recorded
we describe in this paper before the actual acquisition. Afle surface EMG activity from the biceps brachii and tri-
participants were volunteers and signed an informed canseBps brachii muscle using bipolar surface Ag/AgCI eleasod
form before the experiment. (Pirronsé:Co., ltaly) attached about 2 cm apart along the
The parameters of the elbow+forearm inverse dynamigghgitudinal axis of the muscle belly. All the EMG recording
model (6) were individually estimated for each particisantwere digitized at 1 kHz using the Telemyo 2400R G2 Analog
using tables adapted from [35]: Output receiver (Noraxon USA Inc., AZ, USA). Very impor-

« The forearm mass d&2% of the total body weight, i.e. tantly, note that EMG was not used to control the assistance
m = 0.022M [kg], where M denotes the total body protocol, but only for post-hoc assessment of the decrease i
weight. effort associated with this protocol.

« The forearm equivalent length &8.2% of the total EMG analog recordings and NEUROEXxos outputs were
forearm length, i.el = 0.682L [m], where L denotes synchronized by means of a Labview routine running at 1 kHz
the total forearm length. on the real-time controller NI PXI-8196 (National Instrume

« The forearm inertia as the product between the forearfiX, USA).
mass, and the square of the forearm radius of gyration, )

i.e. I =m(0.827L)? [Nms*/rad]. D. Experimental protocol

Both M and L were measured for each participant indi- The participant comfortably sat on a chair, and wore the
vidually. The friction coefficientb was tuned according to NEUROEXxos on their right arm, except during the “no-exo”
the damping factor: b = 2IQ0¢ [Nms/rad], whereQ, = condition, that will be detailed in the next paragraph. The
\/mgl/T is the resonance frequency of the hanging pendullFUROEXo0s was fastened both at the participant upper arm
(pointing downwards). We assumed in our model that 0.8 and forearm (see Figure 4). The NEUROEXos support was
for all participants, which is approximatively four timeigher adjusted to support the participant's arm in the horizontal
than documented in the literature (see e.g. [36]), givirsg ri POsition, i.e. the shoulder forming an angle of abgit with

to over-damped dynamics. This value was obtained by mani@$pect to the chest in both frontal and transverse planes.
tuning during pilot tests, such that it captured residuiatitm ~ Participants were asked to put their forearm in the upright

of the forearm part of the exoskeleton, i.e. the part movirkgrtical position, and to make cyclical flexion/extensioound
with the participant's forearm. this position at a target amplitude and pace provided by a

computer. Feedback about movement amplitude was provided
to the participant via augmented visual feedback about the
movement on a computer screen: A central cursor moved

The assistance device we used in this experiment was tregtically by following the elbow angular displacement,ileh
NEUROEXxos (Figure 4), an elbow active orthosis conceivedio peripheral cursors delimited the target movement range
for neurorehabilitation and assistance purposes [37], [3& Movement pace was softly constrained by a metronome.
NEUROExos was developed addressing three main desiarticipants were asked to make one full cycle (flexion-
targets. (i) The human elbow anatomy was treated as “looseension) between two consecutive beeps. Both the visual
hinge joint” [39]. Indeed, the rotation axis of the elbowrbi feedback and the auditory cueing only provided guidance to
changes its orientation along with the elbow flexion-exims the participant to follow the movement features. No coivect
motion task. Consequently, NEUROExos was equipped wittttions were applied by the exoskeleton to compensate for
a 4-dof passive mechanism to automatically align the mmatierrors in movement amplitude or frequency, such that the
axes of the active orthosis and the human elbow. (ii) Thearticipant always kept the full control of these high-leve
user-robot mechanical interface was conceived using lingarameters.

Fig. 4. Front view of a participant wearing the NEUROEXxo0s.

B. Participants

C. Experimental setup
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max pos

Each participant underwent three types of condition, in the
following order:

1) Inthe “no-exo” condition, the NEUROEXxos was actually
replaced by a simple 1-dof goniometer, recording the ;
movement kinematics and providing visual feedback the : min:vel :min pos
same way as done by the NEUROEXxos. The participant normalized time [% of cycle]
had the same posture as described above, such that

this condition was used as the baseline, to register tﬁ@' 5. Kinematics landmarks that were used to analyze theeslodp
. . . . . hé cycles from the position (solid) and velocity (dotteddfles: maximum
kinematics and biceps/triceps EMG corresponding togsition (max pos), minimum position (min pos), and minimum vejoghin

control condition. This condition lasted a single trial ofel). For example, if the cycle was perfectly sinusoidal, mas$ 25%, min
about 2 minutes, at a constant target movement pace'8f= 50%. and min pos= 75%.
1Hz. The last 5 seconds of acquisition were removed

before data processing. . : .
u , . - two signals were again smoothed using the same Butterworth
2) In the “constant frequency” condition, participants-pet,, . .
formed three sequences of five consecutive trials eaé'f|1ter' EMG raw data were processed using the following
sa‘quence: (i) high-pass filtering (Butterworth, 3rd orae-

03
-
Yeu

position and
velocity

Each trial lasted for 60s and corresponded to a differen s e :
: i . . . off frequency of 10Hz); (ii) full wave rectification using e¢h
level of assistance: In trial 1, no assistance was provide : i
. o “ " . absolute value of the Hilbert transform; then (iii) low-pas
(= =01in (7)); in trial 2, a “small” amount of aSSIStanceﬁlterin (Butterworth, 3rd order, cut-off frequency of 19H
was provided £ = 0.33), such that the exoskeleton 9 ' ! d y ’

should perform one third of the total effort): trial 3FlnaIIy, all biceps and triceps EMG data were independently

X . . .normalized by the average of the corresponding peak EMG
was like trial 1 (no assistance), to wash-out potential . ; : o
. . : - reached during the last 20 cycles of the “no-exo” condition
adaptation effects due to the first level of assistance; in . .
) “ N . . The raw sequence data were separated into trials, of 60s
trial 4, a "larger” amount of assistance was prowdeg ch (except for the “no-exo” condition). Then, each trial
(v = 0.5), such that the exoskeleton and the partlmpanfa P j '

should perform half of the total effort each); and trialvas separated into cycles using a peak detection algorithm:

5 was again a wash-out trial(see Figure 8 for the sueach cycle was delimited by two consecutive velocity peaks.

cession of trials). The target movement pace was ag ji‘frrlne ongoing cycle during trial transitions was not includied

constant and equal to 1Hz. A rest period of a couple Q/aeri:g:zggs' Within each cycle, we computed the following

minutes was given between two successive sequences. )
3) Finally, participants performed three sequences of the® Average absolute errobetween estimates of the angular
position, velocity, and acceleration provided by (3) and

“variable frequency” condition. The succession of as- . . . I~
sistance levels was similar to the “constant velocity” (5), and the filtered actual signals. This quantified the

condition ¢ = 0,0.33,0,0.5,0) but this time the target performance of the adaptive oscillator to provide smooth
movement pace varied across the trials. During the first Put delay-free estimates of these variables.

6 seconds, the target movement pace was kept constart Cycle amplitudg(half difference between maximum and
at 1Hz (corresponding to about 6 cycles), then the target MiNiMum angular position), andycle duration in or-
movement pace linearly increased during 12s to reach der to assess the task fulfilment across the different
1.4Hz, then the target movement pace linearly decreased conditions. We further computed tHecation of three
during 24s to reach 0.6Hz, then increased again during Movement landmarksithin the cycle, i.e. the maximum
12s to reach 1Hz, and finally stayed at 1Hz during Position, minimum position, and minimum velocity (see
the last 6s (see Figure 10A). These target paces were F19ure 5). . _ .

converted on-line to varying time intervals that were * Mean and the maximum level of biceps and triceps EMG
provided to the participant via the metronome. in order to assess the influence of the level of assistance

The reference amplitude was kept constant across all con- on the muscular activity.

ditions at20°, thus corresponding to a total elbow excursion Since the number of full cycles within one trial was not
of about40°. always exactly equal to 60, we kept only the data correspond-

ing to the following cycles for displaying the results: Tzt

. - 20 cycles of the “no-exo” condition (providing the basejine

E. Data analysis and statistics the first 20 and last 20 cycles of the “constant frequency”
In order to filter the sensor noise for analyzing the moveondition, and the middle 48 cycles of the “variable frequyén

ment kinematics, the actual angular position sigh@) that condition (i.e. corresponding to the non-stationary mosem

was recorded by the NEUROEXos sensor was first off-line loygace). When appropriate, statistics on the steady-staferper

pass filtered (Butterworth, forward and backward in time, 3rdnance was computed on the last 20 cycles of each trial (“no-

order, cut-off frequency of 10Hz), then twice differenéidtto exo” and “constant frequency” conditions). Statisticastse

get estimates of the angular velocity and accelerations@hgevealed that none of the above mentioned variables varied
3 o . o across sequences (two-way ANOVAs using the sequence and
Importantly, this filtration was ONLY applied for off-line afistics and . . .

NOT in the on-line assistance algorithm. The on-line alonitreceived the the level of assistance as main faCtorS)' The effect of the ma

raw unfiltered positiord(t) as input to equations (1), (2), and (4). factor “sequence” and the interaction between both factors
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' condition and the “constant frequency” condition. In th@-n
Fig. 6. Comparison between the actual kinematics (black) bestimated €X0” condition, the mean AE in position (panel A) was about
version provided by the AFO (gray) during 8s of performancthin“no-exo”  1.8°, i.e. 8.9% of the movement amplitude; the mean AE in
g‘égg;gfgﬂig ?b:)etfgas)e”ta“"e participant: position Jiaelocity (middle) and yse|ocity (panel B) was about3.3°/s, i.e. aboutl8.6% of the
’ velocity amplitude; and the mean AE in acceleration (panel
C) was about192.8°/s?, i.e. about32% of the acceleration
never reached significance (afs> 0.21). Consequently, the @mMPplitude. In the “constant frequency” condition, eachngea
sequences were pooled together as within-participanorfactn aS_S|stance_ factor was followed by a deterioration of the
both in the figures and in the statistics. Therefore, stesist racking quality. Focusing on steady-state performanast (I
are reported as one-way ANOVAs (level of significance s&¥cles), an ANOVA showed significance for all three vari-
to p < 0.05) with the combination of condition and level of@bles (position:F(3,28) = 30.9; velocity: F'(3,28) = 30.6;

assistance as single factor. Four levels were differamtia) aCCeleration:'(3,28) = 6.5; all p's< 0.002), revealing that
“no-exo” (i.e. x = 0); (ii) “constant frequency” or “variable the estimates in steady-state behavior were more reliallei

frequency” withx = 0; (i) “constant frequency” or “variable “constant frequency” condition than in the “no-exo” comafit
frequency” withx = 0.33; and (iv) “constant frequency” or and were more reliable with higher levels of assistanceiwith
“variable frequency” withx = 0.5. the “constant frequency” trials.

When appropriate, post-hoc comparisons of the ANOVA Worse estimates were obtained during the transient epochs

levels were tested using the Tukey-Kramer method. All dafgcause the movement slightly changed: In the first cycles
ith assistance, participants accelerated the movemefureb

processing and statistics were computed using Matlab (th ) ! , e
MatWorks, Natick, MA). managing to retrieve the metrono_me pacing; while in contras
the first cycle of the “wash-out” trials corresponded to slow
movements (Figure 8D). Steady-state performance of the es-
Hl. RESULTS timator was reached again after 5 to 10 cycles.
A. Efficiency of the adaptive oscillator

When the movement was (quasi-)stationary, the adaptiBe Accuracy and kinematic profile across conditions
oscillator provided delay-free and smooth estimates of theln order to establish that the participants correctly figll
elbow angular position, velocity and acceleration, act@d the task, and were not perturbed by the exoskeleton mechanic
to (3) and (5). These estimates are compared to the actaatl/or the assistance provided during the correspondialg,tr
profiles in Figure 6, over 8s of performance in the “no-exolve computed the movement amplitude and duration of each
condition for a representative participant. This figureesds cycle. These variables are shown in Figure 8D,E for the “no-
the high performance of the smoothing based on an adaptas” condition and the “constant frequency” condition. As
oscillator: The tracking is good, and the estimated sighabit already mentioned before, the figure reveals a transieetteff
lagging behind the actual one. Also, the oscillator outgut i due to the adaptation to the assistance torque: The movement
smooth version of the actual kinematics, which is partidyla amplitude increased for one cycle, then decreased and was
visible for the acceleration. stabilized within about 5 to 10 cycles, while the cycle diamat

The oscillator capacity to estimate the movement kinersatirapidly decreased (corresponding to faster movements) and
was due to the good tracking of the movement featuresached again the target pace after about 5 to 10 cycles.
(frequency, amplitude, offset). Figure 7 shows the estghatSome transients are also visible at the beginning of theliwas
movement frequency (from (2)) throughout a representativeout” trials (3 and 5), but they disappeared more rapidly. We
trial of the “constant frequency” and “variable frequencytesigned one-way ANOVAs on the steady-state performance
conditions. Importantly, the oscillator performance aainbe with the condition/level of assistance as the unigue factor
directly quantified from this figure, since it is impossibleNone of them reached significance (alé> 0.1), revealing
to know what was the exact instantaneous frequency of ttheat the steady-state cycles had the same amplitude and
participant forearm during the movement execution. duration in the three levels of assistance of the “constant

The absolute error (AE) between actual and estimaté@quency” condition as within the “no-exo” condition.
kinematic variables were computed and averaged within each_ooking more into the details of possible kinematic changes
cycle. This is shown in Figure 8 for both the “no-exo’across conditions, we computed the location (in cyg&leof
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§ sl Fig. 9. Steady-state EMG profiles (biceps, left; tricepght) of the “no-
> exo” condition (dotted black), and the “constant frequéramndition (< = 0,
& sor dash-dotted bluex = 0.33, dashed purplex = 0.5, solid orange). These
E 25k M \'»\. profiles were obtained by resampling the actual trajectaries 101 equally
o ast i ——r WA A spaced points for each cycle, then averaging for each of @epbints.
< oL

The most striking difference between the performance in
the different conditions and levels of assistance was leisib
in the EMG profiles developed by the participants. Figure 8
D shows the evolution of the EMG peak for the biceps (panel
F) and triceps (panel G) across the cycles in the different

W conditions. It was normalized for each participant to datsl

around 1 in the “no-exo” condition. Two important results

' are visible on this figure: (i) wearing the exoskeleton witho
: assistance (difference between the “no-exo” conditionthed
“constant frequency” condition witke = 0) induced larger
I'W«\‘ MW v L‘m biceps activity, this being certainly due to the exoskeleto

! e forearm’s mass and inertia, that were not compensated in tha

mode and that mainly loaded the joint flexor; and (ii) promgli
assistance (bothi = 0.33 and x = 0.5) progressively
F induced a marked decrease in peak EMG. The highest level
of assistance we tested & 0.5) corresponded to a decrease
w N of about26% in the biceps peak EMG, ariid% in the triceps
peak EMG with respect to the “no-exo” condition. Figure 8F,G
also reveals that reaching the reduced level of EMG when
assistance was provided took between 10 and 20 cycles for
the participants.
15 Focusing on the steady-state performance, statistics were

1%%“% designed in order to establish the significance of the EMG
051 ot peak decrease. One-way ANOVAs with the condition/level
0= of assistance as single factor were designed. Both ANOVAs

first 20 last 20 veleumber were clearly significant: bicepsF(3,28) = 8.5; triceps,
Fig. 8. Cycle-by-cycle evolution of different variablesbgolute error of the F'(3,28) = 19.5; both p's< 0.0003. Post-hoc tests in the
oscillator-based estimates of the position (A), velocity, (Bnd acceleration biceps peak EMG revealed a significant decrease between

(C); movement performance in term of cycle duration (D) and aunédi (E); ; _ « T
maximum of the measured EMG for the biceps (F) and triceps (&.pEmels the no aSSIStance%(_ 0) constant frequency trials, and

show the last 20 cycles of the “no-exo” condition (black)dahe first and the augmented (botkk = 0.33 and x = 0.5) “constant
|asctj 250i :{CILE: ?rfl ;aZC?ntriZIIrOIL thaen;Cg?;tjnitnfggﬂeggy’%g:og quiilessl\}v:r'e frequency” trie_1I§. The decrease was not significant with the
Sgoled togethyer in the “(‘:)ongta’nt frequency” condigon..Mareas represent “no-exo” condition, due to the load Cause.d by the,eXOSkeleto
the between-participants SEM. forearm. The effect was even clearer in the triceps: Post-
hoc comparisons reached significance between any of the
non-augmented trials (“no-exo”, and “constant frequency”
specific movement landmarks within each cycle (see Figure 5)= 0) and any of the augmented one (“constant frequency”,
Only one of these landmarks significantly changed across the= 0.33 and x = 0.5). Despite a trend visible in Figure 8,
same 4 conditions, albeit just below the statistical thoigkh the difference between the two augmented conditions did not
The mininimum velocity was reached earlier in the cycle & threach significance for neither the biceps, nor the triceps.
“no-exo” condition than in the “constant frequency” coralit Figure 9 shows the steady-state EMG profiles normalized
(F'(3,28) = 3.3, p < 0.04), at least withx = 0 (post-hoc). over the whole cycle, by resampling over 101 equally spaced
This difference reflects that the velocity profile was adfual points. The decrease in peak EMG, as reported before, ia agai
more symmetrical in the “constant frequency” conditionrthavisible. The figure also shows that the whole EMG profiles ac-
in the “no-exo” condition. tually flatten out when assistance was provided. Conselyuent
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3 20k m “M” AN W; A _W with p < 0.05. The gray inset shows the variation of the target frequency
"—‘;l 1sb (see Figure 10A).
© L

—_—
middle 48 cycle number

Fig. 10. Target frequency (A) and movement performance in teroyde

duration (B), duration signed error (C), and amplitude ()eTigure shows
the last 20 cycles of the “no-exo” condition (black), and nédd8 cycles
of each trial of the “variable frequency” condition (trials 3, and 5 in blue,
trial 2 in purple, and trial 4 in orange). Panel B also showes tdirget cycle
duration in gray, thus corresponding to the inverse of thgetafrequency.
The 3 sequences were pooled together in the “variable freyleeondition.

in the standard condition, i.e. not wearing the exoskeleton
The adaptive oscillator managed to track the movement
parameters with the same level of performance as within
the “constant frequency” condition, although with some de-
lay caused by the adaptation dynamics (see Figure 7B for
a representative trial showing the frequency estimatel Th

Shaded areas represent the between-participants SEM. resulting estimates of the movement kinematic profiles were

consequently very good as well. These data are not shown

: . . . for the sake of brevity, but this will be indirectly proved
testing the mean level of EMG across conditions gives rise {0 . : . .
o By showing again a marked decrease in the EMG profiles

very similar results as those reported for the peak.

with assistance, therefore illustrating the proper wagkof
the oscillator-based torque estimator.
D. Flexibility with modulations in movement frequency Figure 11 shows the evolution of the EMG peak across

Participants performed 3 sequences of a non-stationdfg cycles for the three levels of assistance. The graphs
condition at the end of the session. In this condition, thgeta Were superimposed to facilitate the visual comparison eefw
pace was not constant anymore but varied along a triangulla¢ different levels of assistance. It clearly appears that
wave (except during short epochs at the beginning and eigpistance torque facilitated the movement, since both the
of each trial, see Figure 10A) in order to establish that thiceps and the triceps EMG decreased when some assistance
participant kept the possibility to modulate the moveme#tas provided. The EMG peaks also varied depending on the

although receiving assistance. Whether our assistanceotheti'get pace, since faster movements required bigger effort
was still effective during these non-stationary trials Isoa Due to this modulation, it did not make sense to average the

investigated in this section. data to compute ANOVAs. Therefore, we computed a one-
Figure 10 shows — like Figure 8A,B,C in the “constanWvay ANOVA for each cycle, with the level of assistance as
frequency” condition — the evolution of the cycle duratior$ingle factor (3 levels). Stars in Figure 11 indicate theleyc
and amplitude across the cycles in the “variable frequencggr which the ANOVA was significant wittp < 0.05, i.e. all
condition. Panel B also shows the target duration, thus cé@l the triceps, and all but the slowest cycles for the biceps
responding to the inverse Of the target frequency repreden{n sum, th|S i||UStI‘a'[eS that the exoske|et0n Stl” prodde
in Panel A. This illustrates that participants performediive assistance to the participant when the movement pace was
this condition, moving with a constant amplitude but vagyinnot stationary.
the cycle duration. Finally, Panel C shows the error between
the target and the actual duration, reflecting that the cycle IV. DiscussioN
duration slightly diverged from the target for slow durato This paper introduces a new method for providing assistance
The variability of this error depended on the conditiordlev during the execution of rhythmic movements, based on the
of assistance (same 4 levels as before), as assessed by a ymehronization between the user's movement and an adaptiv
way ANOVA, although it was near the statistical thresholdscillator. Synchronization between the user and a comiplia
F(3,28) = 3.7, p < 0.03. Post-hoc analysis only revealed aobot is an important issue when both have to act in synergy.
significant difference between the “no-exo” condition ahd t In [45], Aoyagi et al. showed that a synchronization mecha-
“variable frequency” condition withc = 0.5, this last being nism was necessary to control a lower-leg highly compliant
more variable. In sum, participants performed the trackihg exoskeleton, even if it played-back the average trajectory
the target pace with the same level of accuracy in the “viialrecorded on the participant itself during free walking. The
frequency” condition whatever the level of assistance.sThirequency adaptation mechanism they used was based on a
performance was also very similar to the tracking perforeeanheuristic approach, while here we propose to consider the
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biological joint controller (i.e. the CPG) and its assistivdemonstrate a reduction of the EMG level when the assistance
artificial counterpart as two oscillators whose synchratiim is provided, but we also show that this level goes below the
is achieved through dynamical coupling. In our approach, tevel of the control condition, where the participants dd no
adaptive oscillator is used as a state observer (or estijpatavear the exoskeleton. Few robotic systems in the state-of-
in the sense that it acts like a filter on the input signathe-art reached similar performances [2], [20], [47], [48Lr
Interestingly, Kuo proposed a similar role for the biolaic method is the first one which obtains similar results without
oscillator (i.e. CPG) during execution of rhythmic movernsen being controlled by surface EMG, and therefore avoiding the
[46]. associated complex calibration and sensing issues.

The proposed method, primarily thought for locomotion Adaptation to novel dynamical environments has been ex-
tasks, is validated here by taking into account a cyclicénsively described in the motor control literature (seg e.
movement of the human elbow around the upright positiof9]-[51]). In this study, we also demonstrate adaptation
The input signal (i.e. elbow position) is assumed to containmechanisms to a novel dynamical environment, although the
single harmonic, such that a single specific oscillator sdusforce field acting on the participant joint is created by the
accordingly. Experimental results show that the patter® eXoint movement itself. Moreover, the adaptation time cantt
cuted by the participants is not perfectly sinusoidal,@itth measured here are surprisingly small (about 10 cycles)asnd
Figure 6 reveals that the adaptive oscillator output casturactually in the same order of magnitude as the adaptatiom tim
only the main harmonic of the input signal (this is particlyla constant of the oscillator itself.
visible from the acceleration profile). Moreover, the irseer  The results of the non-stationary trials demonstrate tiat t
model that is used to compute the torque needed to move peeticipants keep the full control of the high level featid
exoskeleton and the user’s forearm, is only a rough estiofatethe movement. In particular, we show that they are able to
the actual dynamics. In fact, static friction and stiffn@gsre modulate the movement frequency along the trial, whild stil
neglected, and the user's anthropometric parametersifiper receiving a substantial amount of assistance. To the bestrof
limb mass, inertia and length) were crudely estimated basedknowledge, this is the first time this result has been ackieve
Winter's standard tables [35]. Despite these shortcomitigs without needing to sense the surface EMG of the muscles
method is efficient since all participants were able to flgxib actuating the corresponding joint. The proved adaptivitthe
adapt and take advantage of the assistance they receiywdposed approach in the non-stationary condition is encou
This robustness is due to the fact that the assistive afgorit aging for the development of novel rehabilitation protecdh
is designed to amplify the user torque. Even if the inversehich the reference trajectory is not pre-specified but tdap
model is not accurate, the user will nevertheless receiwgesoto the user.
assistance (with levet k). The participant comfort is optimal Complementing other approaches based on compliance [5],
if both torques are in phase. [6], [52], [53], adaptation [5], [54], or adaptive learnimaf a

Besides the capability of the control system to learn thdynamical model for the task at hand [55], our method opens
user’s movement features and to adapt to their changes, tieev perspectives for providing assistance-as-neededl lmase
learning ability of humans also plays a fundamental rolet Nomovement primitives. The concept of movement primitive
only does the assistive exoskeleton adapt its behaviordo thas been broadly emphasized to account for the organization
user’s intention, but also the user itself adapts its befmaviof complex movements in biology [56], modeling [57], and
to the provided assistance, as shown by the re-modulationrobotics [58]. In this paper, we propose a very simple rhythm
the EMG activity. Regarding the kinematic profiles, Figurerimitive, i.e. the adaptive oscillator, such that we obtai
8A,B,C shows that switching the assistance on and off iencouraging results for a particular rhythmic movementhbo
duces some transients in the quality of the position-vgjeci in steady-state and for gently varying conditions. Thedfan
acceleration estimates. This is likely due to the fact that tof our approach for designing novel rehabilitation protsco
movement itself changes during these transitory phases. Eould, for example, be beneficial for patient suffering from
example, switching the assistance on makes all partigpamuscular weakness. Indeed, our algorithm both smoothens
willing to accelerate the movement, and it takes a few cyclesit the movement kinematics and provides assistance on
to retrieve the nominal tempo. Due to the oscillator inertimemand without the need of a reference trajectory. Corlgrete
which depends on the adaptation parameters, these abitigtould be possible to design a rehabilitative protocol to
changes require about 10 cycles for the oscillator to gptovide assistance-as-needed by regulating the gafithe
back to the steady-state level of performance. Analysis fs&ction of torque fed back to the patient) on the basis of
the pattern kinematics further reveals that the movementti® ongoing performance. For example, in the first phase of
more symmetrical (and thus more sinusoidal) when assistarnice therapy, when the patient has a lower motion capability,
is provided. We believe this is an effect of the assistargadfjt the rehabilitative device provides a high assistance irerord
which is designed assuming sinusoidal movement and in tumimprove the movement performance (e.g. range of motion).
provides a quasi-sinusoidal torque. Nonetheless, theutee@c Then, at a later stage, it gradually reduces the assistamce,
pattern stays very similar across conditions. order to promote the effort of the patient and, consequently

Further insights about the cross-adaptation raise from tmeprove the efficiency of the rehabilitative therapy. Eweily,
analysis of the muscles activation. The most striking diffee negative gains could also be used to make the task more
between the not assisted and assisted conditions is treeceurfdifficult. Furthermore, the degree of assistance could biso
EMG measured for the biceps and triceps. Not only do waodulatedwithin the cycles, e.g. to provide different support
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