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Abstract—We propose a novel method for movement assistance
which is based on adaptive oscillators, i.e. mathematical tools that
are capable to extract the high-level features (amplitude, fre-
quency, offset) of a periodic signal. Such an oscillator acts like a
filter on these features, but keeps its output in phase with respect
to the input signal. Using a simple inverse model, we predicted the
torque produced by human participants during rhythmic flexion-
extension of the elbow. Feeding back a fraction of this estimated
torque to the participant through an elbow exoskeleton, we were
able to prove the assistance efficiency through a marked decrease
of the biceps and triceps EMG. Importantly, since the oscillator
adapted to the movement imposed by the user, the methods
flexibly allowed to change the movement pattern and was still
efficient during the non-stationary epochs. This method holds
promise for the development of new robot-assisted rehabilitation
protocols because it does not require pre-specifying a reference
trajectory and does not require complex signal sensing or single-
user calibration: The only signal that is measured is the position
of the augmented joint. In this paper, we further demonstrate
that this assistance was very intuitive for the participants who
adapted almost instantaneously.

Index Terms—adaptive frequency oscillator, motor primitive,
adaptation, human-robot interaction, flexibility, assist-as-needed

I. I NTRODUCTION

ONE of the most challenging aims of modern robotics is
to improve the quality of humans’ daily life [1]. In order

to accomplish such an ambitious task, robots should cooperate
in synergy with humans while working in direct contact
with them. This concept is well exemplified with powered
exoskeletons, wearable robots designed to assist humans while
performing movements [2], [3].

Exoskeletons can be used to increase the performance of
healthy persons (i.e. human augmentation robotics) [4], tore-
train the nervous system of people suffering after stroke (i.e.
rehabilitation robotics) [5], [6], or to assist people affected by
chronic movement disorders or neural lesions (i.e. assistive
robotics) [7]. Each of the aforementioned applications require
a specific robotic platform and control scheme. Nonetheless,
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all wearable devices need to face the crucial issue of the
human-robot interface [8].

Ideally, the user should fully control the robot in order to
have it synchronized with his/her intentions and, consequently,
to benefit from the supplied assistance while performing the
movement. A common strategy for the human-robot interface
is the so-called “Shared control” [9]. This approach allowsto
share the cognitive effort needed to control the platform be-
tween the user and the controller of the robot. As consequence,
the user is interfaced with the robot through some high-level
commands, that are interpreted and then executed by the robot.

In the case of wearable robots assisting limb motions,
these high-level commands must specify the characteristics
(e.g. direction, velocity, amplitude) of the intended movement.
Ideally, the robotic platform should detect the user motion
intention and react timely to provide the specific assistance
needed by the user in terms of direction and absolute value.
At the same time, the learning ability of humans plays a
fundamental role in achieving human-robot synchrony. For
instance, humans can re-modulate their muscle activation
patterns in order to cope with and exploit the extra-torque
provided by the robot [10]. In this way the user reduces his/her
effort without loosing control of the movement. For these
reasons, the analysis of human-robot interactions requires to
investigate the cross adaptation of the two partners: The robot
adapts its behavior to the user intentions (i.e. movement char-
acteristics), who in turn adapts his/her behavior to optimize
the collaboration with the robot.

A possible way to detect the user intention is through a
direct interface with the central or peripheral nervous system
[11], [12], as demonstrated on primates to control a multi-dof
robotic manipulator [13]. Furthermore, nerve intra-neural elec-
trodes were successfully used to control a hand prosthesis [14].
However, these strategies are highly invasive and implantsstill
lack in duration and reliability [15].

Considering less invasive approaches, a large number of
EMG based controllers were proposed in the past years to
detect the user motion intention for the control of exoskeletons
[16], [17]. These systems correlated the user’s EMG with the
muscular joint force/torque using either model-based [18]or
model-free [19] approaches. These robotic devices provided
the wearer with a fraction of the estimated torque to decrease
his/her effort. Recently, this approach was used to restorethe
physiological walking of physically disabled persons [7] and
to reduce the metabolic consumption of walking in healthy
subjects [20].

Despite these encouraging results, EMG-based approaches
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Fig. 1. Sketch of the synchronization between the human joint(elbow in
this case) and an adaptive oscillator. The oscillator feedsback some torque
ue(t) to the controlled joint.

have some drawbacks, mainly related to signal acquisition,
and user-specific calibration. Electrode positioning, as well
as skin condition, greatly affects the recorded signal. As a
consequence, EMG-based controllers require not only a long
custom calibration for each user but also additional calibra-
tions between and within experimental sessions. Moreover,
model-based torque estimation can have poor accuracy and
requires large computational effort.

In the present paper, we propose an alternative method for
providing movement assistance during rhythmic tasks which
predicts the movement trend directly from the joint kinematics.
This approach is non-invasive since it does not rely on any
recording of neural commands to the muscles. The only signal
that needs to be measured is the assisted joint position. Our
method is based on synchronization, a ubiquitous phenomenon
in systems biology [21]. Here, synchronization is supposedto
happen between two oscillators: A neuromechanical oscillator
actually driving the moving joint, and an artificial oscillator
providing assistance (Figure 1).

The neuromechanical oscillator consists of the limb me-
chanics and the neural circuits1 actuating it. The artificial
counterpart, providing assistance, is based on an adaptivefre-
quency oscillator2, a mathematical tool developed by Righetti
et al. [27] for various applications [28]: resonance tuning
[29], frequency analysis [30], and on-line learning with robots
[31], [32]. An adaptive oscillator is expressed as a dynamical
system characterized by a limit cycle whose features (phase,
frequency, amplitude,. . . ) are changed in adaptation to an
external input, i.e. the movement kinematics in this case.
Therefore, it reflects the real-time user intention about the
performed movement.

The proposed method has been conceived primarily for
assistance of the lower leg, given the periodic features of
locomotion tasks. Nevertheless, in this study, we will focus
on a proof of concept of our approach, i.e human cyclical
movements about the elbow in the upright position. Therefore
the model presented here does not have to deal with com-
plex dynamics due to multi-joints coordination or to impacts
with the ground, ubiquitous in locomotion. Note however
that this elbow configuration mimics the inverse-pendulum
configuration of legs during the stance phase of walking
[33]. The present paper mainly establishes that (i) using an

1Possibly based on a spinal Central Pattern Generator (CPG) as discussed
for the lower [22] and upper extremities [23]–[26].

2For brevity, we will simply refer to this as anadaptive oscillatorin the
rest of this paper. Furthermore, the dynamical system used in this paper has
the intrinsic capacity to adapt not only its frequency but also its amplitude
and offset, making the termadaptive oscillatormore generic.

Fig. 2. Block diagram of the integrated system (human + exoskeleton). Each
black box is detailed in the text. The shaded area (human + elbow dynamics)
does not need to be explicitly modeled.

oscillator-based assistance strategy decreases the humaneffort;
(ii) the participant always keeps the control of the high level
parameters (namely movement amplitude and frequency), such
that the assistive device flexibly adapts; and (iii) our approach
requires few user-specific tuning or calibration and is intuitive
for the user. Preliminary results were submitted to a conference
[34]. The present paper provides the first experimental results
establishing the adaptive behavior of our algorithm, and further
establishes the statistical significance of all results, including
more participants.

II. M ETHODS

A. Assistance using adaptive oscillators

Human assistance is provided through an exoskeleton being
controlled by an adaptive oscillator [27]. This oscillatoris
used as state observer (or estimator), in the sense that it
acts like a filter to smoothen and anticipate the evolution
of the corresponding joint state. Unlike conventional filters,
this adaptive oscillator is however able to predict an estimate
of the state evolution (and the evolution of higher order
derivatives) in real-time, i.e. without delay with respect to
the measured output. This is due to the fact that the filter
assumes the signal to be periodic, i.e. repetitive. Importantly,
this filtering oscillator is currently designed to work onlyfor
quasi-sinusoidal signals, and would not work properly with
other profiles (see [31], [32] for adaptation to non-sinusoidal
periodic profiles). Finally, the filter continuously adaptsto
changes in the input signal features, namely the movement
phase, frequency, amplitude, and offset, in the case of a
sinusoidal input.

In this study, we focus on the assistance of a simple
one degree-of-freedom human joint, namely the elbow. The
fundamental building blocks of the coupled system (human
elbow + exoskeleton) are depicted in Figure 2 and described
in the paragraphs here below.

a) Human central nervous system (CNS):The human
acts in the loop in order to steer the elbow movement to match
with an intended movement (i.e. a sinusoidal movement with
a specific amplitude and frequency in this case). Importantly,
an explicit model of this controller, or of the sensory signals
being used, is not required for our application. We simply
assume that the human provides a torqueuℎ(t) in order to
move the controlled joint.
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Fig. 3. Example of the oscillator’s adaptation dynamics. Top panel: The
oscillator’s output�̂(t) (dotted gray line) filters out the sudden change in the
input �(t) (solid black line), i.e. a frequency step att = 0. Bottom panel:
Corresponding evolution of the learned frequency!(t).

b) Elbow dynamics:The elbow dynamics block maps the
input torque to an output trajectory, therefore integrating the
different forces acting at the joint level. Again, this block is
not explicitly processed in our algorithm, but rather captures
the mechanical dynamics of the elbow. An inverse model of
this block will be detailed later in this section.

c) Adaptive oscillator:The adaptive oscillator block is
directly adapted from [27]. It is a system of differential
equations based on a Hopf oscillator, i.e. a two state variables
(x(t) and y(t)) oscillator having a limit cycle attractor when
� > 0 and
 > 0. Moreover, the Hopf oscillator can reach a
phased-locked regime with respect to a periodic inputF (t):

ẋ(t) = 

(

�−
(

x(t)2 + y(t)2
))

x(t) + !(t)y(t) + �F (t),

ẏ(t) = 

(

�−
(

x(t)2 + y(t)2
))

y(t)− !(t)x(t). (1)

In (1),!(t) [rad/s] is the oscillator’s intrinsic frequency; and�
and
 determine the oscillator’s amplitude and the attractivity
of the limit cycle, respectively. In the present experiment, we
used � = 1 (such that the oscillator’s intrinsic amplitude
equals one) and
 = 8 (like in [27], [32]). The learning
parameter� determines the speed of the phase synchronization
with respect toF (t). In [27], this oscillator was augmented to
learn the frequency of the input signalF (t), using an integrator
whose argument sums up to zero over one period ifF (t) and
y(t) have a phase-lag of90∘ (i.e. if F (t) and x(t) are in
phase):

!̇(t) = �F (t)
y(t)

√

x(t)2 + y(t)2
. (2)

In the present paper, we moreover implemented a mechanism
to reset the integrator (2) if ever it would be attracted by the
movement offset, i.e. the zero frequency. Practically, we reset
! to 2� if ! ≤ 0. Visual inspection of the data revealed that
this happened very rarely.

Finally, [31] proposed to use this building block to learn
the parameters of a sinusoidal input by using the difference
between the raw signal�(t) (i.e. the elbow position measured
by the exoskeleton joint encoder in our case) and the estimated
(or learned) signal̂�(t) as input, i.e.F (t) = �(t)− �̂(t). The
estimated signal is simply the oscillator output plus an offset
term, i.e.:

�̂(t) = �0(t) + �1(t)x(t), (3)

where the amplitude�1 and the offset�0 can be learned by
integrators:

�̇0(t) = �F (t),

�̇1(t) = �x(t)F (t), (4)

with � being the integrator gain. Due to the intrinsic dynamics,
the oscillator time constants are characterized by the gains �
and�. Ideally, these gains should by high enough to smoothly
and rapidly drive the oscillator adaptation, but low enough
to avoid stability issues. In the present experiment, we used
� = 20 and� = 5, as found after pilot tests. Figure 3 shows
an example of the oscillator behavior. At timet = 0, the
input frequency changes. This change is filtered out by the
oscillator, which eventually resynchronizes with the new input.
The new frequency is learned via the dedicated state variable
!(t), as shown in the bottom panel. Changes in amplitude and
offset give rise to similar adaptation of the correspondingstate
variables.

Assuming that the actual input signal is (quasi-)sinusoidal,
the state estimator block easily provides a zero-delay smooth
estimate of the input signal (3), but also of its velocity and
acceleration:

ˆ̇
�(t) = �1(t)!(t)y(t), (5)
ˆ̈
�(t) = −�1(t)!(t)

2x(t).

d) Torque estimator:We assume that the elbow dy-
namics can be captured with a simple pendulum model,
I�̈(t) = −mgl sin �(t)− b�̇(t)+u(t), whereI [Nms2/rad],m
[kg], and l [m] denote respectively the forearm+hand inertia,
mass, and equivalent length;b [Nms/rad] denotes the elbow
viscous damping constant;g = 9.81m/s2 denotes the constant
of gravity; and �(t) [rad], �̇(t) [rad/s], and �̈(t) [rad/s2]
denote the elbow angular position, velocity, and acceleration,
respectively. Finally,u(t) [Nm] denotes the input torque that
is applied at the elbow joint, both by the useruℎ(t) and by
the assistance deviceue(t), i.e. u(t) = uℎ(t) + ue(t). Note
that the assistance device mass, damping, and inertia were not
considered in this model, assuming the robot is transparentto
the user.

The torque estimator block simply retrieves an estimate of
the total torquêu(t) based on an inverse dynamical model of
the elbow, i.e.:

û(t) = mgl sin �̂(t) + b
ˆ̇
�(t) + I

ˆ̈
�(t). (6)

Finally, a fraction of this torque is fed back to the user via the
assistance device, i.e.:

ue(t) = �û(t), (7)

with the level of assistance0 ≤ � < 1. Assuming a stationary
sinusoidal movement and a perfect inverse dynamical model
(6), such that̂u(t) = u(t), the total torque should emerge from
a collaboration between the user (performing100(1− �)% of
the effort) and the assistance device (performing100�% of the
effort). In theory, the stability limit of the assistive controller
should be reached at� = 1. However, in practice, pilot tests re-
vealed discomfort (like undesired high-frequency oscillations)
for � higher than about0.6, likely due to neglected dynamics
and/or approximations in the inverse model identification (6).
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Fig. 4. Front view of a participant wearing the NEUROExos.

B. Participants

Eight healthy right-handed participants took part in the ex-
periment (aged 26-31, weight 51-73, three female, five male).
None of them ever experienced the oscillator-based protocol
we describe in this paper before the actual acquisition. All
participants were volunteers and signed an informed consent
form before the experiment.

The parameters of the elbow+forearm inverse dynamical
model (6) were individually estimated for each participants,
using tables adapted from [35]:

∙ The forearm mass as2.2% of the total body weight, i.e.
m = 0.022M [kg], where M denotes the total body
weight.

∙ The forearm equivalent length as68.2% of the total
forearm length, i.e.l = 0.682L [m], where L denotes
the total forearm length.

∙ The forearm inertia as the product between the forearm
mass, and the square of the forearm radius of gyration,
i.e. I = m(0.827L)2 [Nms2/rad].

Both M and L were measured for each participant indi-
vidually. The friction coefficientb was tuned according to
the damping factor�: b = 2IΩ0� [Nms/rad], whereΩ0 =
√

mgl/I is the resonance frequency of the hanging pendulum
(pointing downwards). We assumed in our model that� = 0.8
for all participants, which is approximatively four times higher
than documented in the literature (see e.g. [36]), giving rise
to over-damped dynamics. This value was obtained by manual
tuning during pilot tests, such that it captured residual friction
of the forearm part of the exoskeleton, i.e. the part moving
with the participant’s forearm.

C. Experimental setup

The assistance device we used in this experiment was the
NEUROExos (Figure 4), an elbow active orthosis conceived
for neurorehabilitation and assistance purposes [37], [38]. The
NEUROExos was developed addressing three main design
targets. (i) The human elbow anatomy was treated as “loose
hinge joint” [39]. Indeed, the rotation axis of the elbow joint
changes its orientation along with the elbow flexion-extension
motion task. Consequently, NEUROExos was equipped with
a 4-dof passive mechanism to automatically align the rotation
axes of the active orthosis and the human elbow. (ii) The
user-robot mechanical interface was conceived using links

with a lightweight double-shell structure, providing a wide
comfortable interaction surface. (iii) NEUROExos is powered
by two antagonist actuators, each composed by a contractile
element (hydraulic piston) in series with a non-linear elastic
element. The actuators powered the NEUROExos joint by
means of steel wire ropes passing through Bowden cables. The
force transmitted by each antagonist tendon-cable is sensed by
custom force sensors located close to the joint. Because each
antagonist unit works as a series-elastic actuator, it was pos-
sible to exploit the force sensors to develop two independent
closed-loop force controllers [40]–[44]. The force controllers
permitted to control the assistance torqueue(t), with a -3dB
bandwidth of about 15 Hz while providing the NEUROExos
with an active back-drivability. The NEUROExos sensors
provided measures of the joint (elbow) absolute position and
the force transmitted by each tendon cable.

In order to monitor the participant’s effort associated with
movement performance during all conditions, we recorded
the surface EMG activity from the biceps brachii and tri-
ceps brachii muscle using bipolar surface Ag/AgCl electrodes
(Pirronse&Co., Italy) attached about 2 cm apart along the
longitudinal axis of the muscle belly. All the EMG recordings
were digitized at 1 kHz using the Telemyo 2400R G2 Analog
Output receiver (Noraxon USA Inc., AZ, USA). Very impor-
tantly, note that EMG was not used to control the assistance
protocol, but only for post-hoc assessment of the decrease in
effort associated with this protocol.

EMG analog recordings and NEUROExos outputs were
synchronized by means of a Labview routine running at 1 kHz
on the real-time controller NI PXI-8196 (National Instrument,
TX, USA).

D. Experimental protocol

The participant comfortably sat on a chair, and wore the
NEUROExos on their right arm, except during the “no-exo”
condition, that will be detailed in the next paragraph. The
NEUROExos was fastened both at the participant upper arm
and forearm (see Figure 4). The NEUROExos support was
adjusted to support the participant’s arm in the horizontal
position, i.e. the shoulder forming an angle of about90∘ with
respect to the chest in both frontal and transverse planes.
Participants were asked to put their forearm in the upright
vertical position, and to make cyclical flexion/extension around
this position at a target amplitude and pace provided by a
computer. Feedback about movement amplitude was provided
to the participant via augmented visual feedback about the
movement on a computer screen: A central cursor moved
vertically by following the elbow angular displacement, while
two peripheral cursors delimited the target movement range.
Movement pace was softly constrained by a metronome.
Participants were asked to make one full cycle (flexion-
extension) between two consecutive beeps. Both the visual
feedback and the auditory cueing only provided guidance to
the participant to follow the movement features. No corrective
actions were applied by the exoskeleton to compensate for
errors in movement amplitude or frequency, such that the
participant always kept the full control of these high-level
parameters.
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Each participant underwent three types of condition, in the
following order:

1) In the “no-exo” condition, the NEUROExos was actually
replaced by a simple 1-dof goniometer, recording the
movement kinematics and providing visual feedback the
same way as done by the NEUROExos. The participant
had the same posture as described above, such that
this condition was used as the baseline, to register the
kinematics and biceps/triceps EMG corresponding to a
control condition. This condition lasted a single trial of
about 2 minutes, at a constant target movement pace of
1Hz. The last 5 seconds of acquisition were removed
before data processing.

2) In the “constant frequency” condition, participants per-
formed three sequences of five consecutive trials each.
Each trial lasted for 60s and corresponded to a different
level of assistance: In trial 1, no assistance was provided
(� = 0 in (7)); in trial 2, a “small” amount of assistance
was provided (� = 0.33), such that the exoskeleton
should perform one third of the total effort); trial 3
was like trial 1 (no assistance), to wash-out potential
adaptation effects due to the first level of assistance; in
trial 4, a “larger” amount of assistance was provided
(� = 0.5), such that the exoskeleton and the participant
should perform half of the total effort each); and trial
5 was again a wash-out trial(see Figure 8 for the suc-
cession of trials). The target movement pace was again
constant and equal to 1Hz. A rest period of a couple of
minutes was given between two successive sequences.

3) Finally, participants performed three sequences of the
“variable frequency” condition. The succession of as-
sistance levels was similar to the “constant velocity”
condition (� = 0, 0.33, 0, 0.5, 0) but this time the target
movement pace varied across the trials. During the first
6 seconds, the target movement pace was kept constant
at 1Hz (corresponding to about 6 cycles), then the target
movement pace linearly increased during 12s to reach
1.4Hz, then the target movement pace linearly decreased
during 24s to reach 0.6Hz, then increased again during
12s to reach 1Hz, and finally stayed at 1Hz during
the last 6s (see Figure 10A). These target paces were
converted on-line to varying time intervals that were
provided to the participant via the metronome.

The reference amplitude was kept constant across all con-
ditions at20∘, thus corresponding to a total elbow excursion
of about40∘.

E. Data analysis and statistics

In order to filter the sensor noise for analyzing the move-
ment kinematics, the actual angular position signal�(t) that
was recorded by the NEUROExos sensor was first off-line low-
pass filtered3 (Butterworth, forward and backward in time, 3rd
order, cut-off frequency of 10Hz), then twice differentiated to
get estimates of the angular velocity and acceleration. These

3Importantly, this filtration was ONLY applied for off-line statistics and
NOT in the on-line assistance algorithm. The on-line algorithm received the
raw unfiltered position�(t) as input to equations (1), (2), and (4).

Fig. 5. Kinematics landmarks that were used to analyze the shape of
the cycles from the position (solid) and velocity (dotted) profiles: maximum
position (max pos), minimum position (min pos), and minimum velocity (min
vel). For example, if the cycle was perfectly sinusoidal, max pos= 25%, min
vel = 50%, and min pos= 75%.

two signals were again smoothed using the same Butterworth
filter. EMG raw data were processed using the following
sequence: (i) high-pass filtering (Butterworth, 3rd order,cut-
off frequency of 10Hz); (ii) full wave rectification using the
absolute value of the Hilbert transform; then (iii) low-pass
filtering (Butterworth, 3rd order, cut-off frequency of 10Hz).
Finally, all biceps and triceps EMG data were independently
normalized by the average of the corresponding peak EMG
reached during the last 20 cycles of the “no-exo” condition

The raw sequence data were separated into trials, of 60s
each (except for the “no-exo” condition). Then, each trial
was separated into cycles using a peak detection algorithm:
each cycle was delimited by two consecutive velocity peaks.
The ongoing cycle during trial transitions was not includedin
the analysis. Within each cycle, we computed the following
variables:

∙ Average absolute errorbetween estimates of the angular
position, velocity, and acceleration provided by (3) and
(5), and the filtered actual signals. This quantified the
performance of the adaptive oscillator to provide smooth
but delay-free estimates of these variables.

∙ Cycle amplitude(half difference between maximum and
minimum angular position), andcycle duration, in or-
der to assess the task fulfillment across the different
conditions. We further computed thelocation of three
movement landmarkswithin the cycle, i.e. the maximum
position, minimum position, and minimum velocity (see
Figure 5).

∙ Mean and the maximum level of biceps and triceps EMG,
in order to assess the influence of the level of assistance
on the muscular activity.

Since the number of full cycles within one trial was not
always exactly equal to 60, we kept only the data correspond-
ing to the following cycles for displaying the results: The last
20 cycles of the “no-exo” condition (providing the baseline),
the first 20 and last 20 cycles of the “constant frequency”
condition, and the middle 48 cycles of the “variable frequency”
condition (i.e. corresponding to the non-stationary movement
pace). When appropriate, statistics on the steady-state perfor-
mance was computed on the last 20 cycles of each trial (“no-
exo” and “constant frequency” conditions). Statistical tests
revealed that none of the above mentioned variables varied
across sequences (two-way ANOVAs using the sequence and
the level of assistance as main factors). The effect of the main
factor “sequence” and the interaction between both factors
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Fig. 6. Comparison between the actual kinematics (black) and the estimated
version provided by the AFO (gray) during 8s of performance inthe “no-exo”
condition for a representative participant: position (top), velocity (middle) and
acceleration (bottom).

never reached significance (allp’s> 0.21). Consequently, the
sequences were pooled together as within-participant factor,
both in the figures and in the statistics. Therefore, statistics
are reported as one-way ANOVAs (level of significance set
to p < 0.05) with the combination of condition and level of
assistance as single factor. Four levels were differentiated: (i)
“no-exo” (i.e. � = 0); (ii) “constant frequency” or “variable
frequency” with� = 0; (iii) “constant frequency” or “variable
frequency” with� = 0.33; and (iv) “constant frequency” or
“variable frequency” with� = 0.5.

When appropriate, post-hoc comparisons of the ANOVA
levels were tested using the Tukey-Kramer method. All data
processing and statistics were computed using Matlab (the
MatWorks, Natick, MA).

III. R ESULTS

A. Efficiency of the adaptive oscillator

When the movement was (quasi-)stationary, the adaptive
oscillator provided delay-free and smooth estimates of the
elbow angular position, velocity and acceleration, according
to (3) and (5). These estimates are compared to the actual
profiles in Figure 6, over 8s of performance in the “no-exo”
condition for a representative participant. This figure reveals
the high performance of the smoothing based on an adaptive
oscillator: The tracking is good, and the estimated signal is not
lagging behind the actual one. Also, the oscillator output is a
smooth version of the actual kinematics, which is particularly
visible for the acceleration.

The oscillator capacity to estimate the movement kinematics
was due to the good tracking of the movement features
(frequency, amplitude, offset). Figure 7 shows the estimated
movement frequency! (from (2)) throughout a representative
trial of the “constant frequency” and “variable frequency”
conditions. Importantly, the oscillator performance cannot be
directly quantified from this figure, since it is impossible
to know what was the exact instantaneous frequency of the
participant forearm during the movement execution.

The absolute error (AE) between actual and estimated
kinematic variables were computed and averaged within each
cycle. This is shown in Figure 8 for both the “no-exo”

Fig. 7. Evolution of the estimated movement frequency! throughout a
representative trial (gray) of the “constant frequency” condition (A) and
“variable frequency” condition (B). The black line shows the target frequency.

condition and the “constant frequency” condition. In the “no-
exo” condition, the mean AE in position (panel A) was about
1.8∘, i.e. 8.9% of the movement amplitude; the mean AE in
velocity (panel B) was about23.3∘/s, i.e. about18.6% of the
velocity amplitude; and the mean AE in acceleration (panel
C) was about192.8∘/s2, i.e. about32% of the acceleration
amplitude. In the “constant frequency” condition, each change
in assistance factor was followed by a deterioration of the
tracking quality. Focusing on steady-state performance (last
cycles), an ANOVA showed significance for all three vari-
ables (position:F (3, 28) = 30.9; velocity: F (3, 28) = 30.6;
acceleration:F (3, 28) = 6.5; all p’s< 0.002), revealing that
the estimates in steady-state behavior were more reliable in the
“constant frequency” condition than in the “no-exo” condition;
and were more reliable with higher levels of assistance within
the “constant frequency” trials.

Worse estimates were obtained during the transient epochs
because the movement slightly changed: In the first cycles
with assistance, participants accelerated the movement, before
managing to retrieve the metronome pacing; while in contrast
the first cycle of the “wash-out” trials corresponded to slower
movements (Figure 8D). Steady-state performance of the es-
timator was reached again after 5 to 10 cycles.

B. Accuracy and kinematic profile across conditions

In order to establish that the participants correctly fulfilled
the task, and were not perturbed by the exoskeleton mechanics
and/or the assistance provided during the corresponding trials,
we computed the movement amplitude and duration of each
cycle. These variables are shown in Figure 8D,E for the “no-
exo” condition and the “constant frequency” condition. As
already mentioned before, the figure reveals a transient effect
due to the adaptation to the assistance torque: The movement
amplitude increased for one cycle, then decreased and was
stabilized within about 5 to 10 cycles, while the cycle duration
rapidly decreased (corresponding to faster movements) and
reached again the target pace after about 5 to 10 cycles.
Some transients are also visible at the beginning of the “wash-
out” trials (3 and 5), but they disappeared more rapidly. We
designed one-way ANOVAs on the steady-state performance
with the condition/level of assistance as the unique factor.
None of them reached significance (allp’s> 0.1), revealing
that the steady-state cycles had the same amplitude and
duration in the three levels of assistance of the “constant
frequency” condition as within the “no-exo” condition.

Looking more into the details of possible kinematic changes
across conditions, we computed the location (in cycle%) of
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Fig. 8. Cycle-by-cycle evolution of different variables: Absolute error of the
oscillator-based estimates of the position (A), velocity (B), and acceleration
(C); movement performance in term of cycle duration (D) and amplitude (E);
maximum of the measured EMG for the biceps (F) and triceps (G). The panels
show the last 20 cycles of the “no-exo” condition (black), and the first and
last 20 cycles of each trial of the “constant frequency” condition (trials 1, 3,
and 5 in blue, trial 2 in purple, and trial 4 in orange). The 3 sequences were
pooled together in the “constant frequency” condition. Shaded areas represent
the between-participants SEM.

specific movement landmarks within each cycle (see Figure 5).
Only one of these landmarks significantly changed across the
same 4 conditions, albeit just below the statistical threshold:
The mininimum velocity was reached earlier in the cycle in the
“no-exo” condition than in the “constant frequency” condition
(F (3, 28) = 3.3, p < 0.04), at least with� = 0 (post-hoc).
This difference reflects that the velocity profile was actually
more symmetrical in the “constant frequency” condition than
in the “no-exo” condition.

Fig. 9. Steady-state EMG profiles (biceps, left; triceps, right) of the “no-
exo” condition (dotted black), and the “constant frequency” condition (� = 0,
dash-dotted blue;� = 0.33, dashed purple;� = 0.5, solid orange). These
profiles were obtained by resampling the actual trajectoriesover 101 equally
spaced points for each cycle, then averaging for each of the 101 points.

C. Assistance as a marked decrease in EMG

The most striking difference between the performance in
the different conditions and levels of assistance was visible
in the EMG profiles developed by the participants. Figure 8
shows the evolution of the EMG peak for the biceps (panel
F) and triceps (panel G) across the cycles in the different
conditions. It was normalized for each participant to oscillate
around 1 in the “no-exo” condition. Two important results
are visible on this figure: (i) wearing the exoskeleton without
assistance (difference between the “no-exo” condition andthe
“constant frequency” condition with� = 0) induced larger
biceps activity, this being certainly due to the exoskeleton
forearm’s mass and inertia, that were not compensated in that
mode and that mainly loaded the joint flexor; and (ii) providing
assistance (both� = 0.33 and � = 0.5) progressively
induced a marked decrease in peak EMG. The highest level
of assistance we tested (� = 0.5) corresponded to a decrease
of about26% in the biceps peak EMG, and59% in the triceps
peak EMG with respect to the “no-exo” condition. Figure 8F,G
also reveals that reaching the reduced level of EMG when
assistance was provided took between 10 and 20 cycles for
the participants.

Focusing on the steady-state performance, statistics were
designed in order to establish the significance of the EMG
peak decrease. One-way ANOVAs with the condition/level
of assistance as single factor were designed. Both ANOVAs
were clearly significant: biceps,F (3, 28) = 8.5; triceps,
F (3, 28) = 19.5; both p’s< 0.0003. Post-hoc tests in the
biceps peak EMG revealed a significant decrease between
the no assistance (� = 0) “constant frequency” trials, and
the augmented (both� = 0.33 and � = 0.5) “constant
frequency” trials. The decrease was not significant with the
“no-exo” condition, due to the load caused by the exoskeleton
forearm. The effect was even clearer in the triceps: Post-
hoc comparisons reached significance between any of the
non-augmented trials (“no-exo”, and “constant frequency”,
� = 0) and any of the augmented one (“constant frequency”,
� = 0.33 and � = 0.5). Despite a trend visible in Figure 8,
the difference between the two augmented conditions did not
reach significance for neither the biceps, nor the triceps.

Figure 9 shows the steady-state EMG profiles normalized
over the whole cycle, by resampling over 101 equally spaced
points. The decrease in peak EMG, as reported before, is again
visible. The figure also shows that the whole EMG profiles ac-
tually flatten out when assistance was provided. Consequently,
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Fig. 10. Target frequency (A) and movement performance in term of cycle
duration (B), duration signed error (C), and amplitude (D). The figure shows
the last 20 cycles of the “no-exo” condition (black), and middle 48 cycles
of each trial of the “variable frequency” condition (trials1, 3, and 5 in blue,
trial 2 in purple, and trial 4 in orange). Panel B also shows the target cycle
duration in gray, thus corresponding to the inverse of the target frequency.
The 3 sequences were pooled together in the “variable frequency” condition.
Shaded areas represent the between-participants SEM.

testing the mean level of EMG across conditions gives rise to
very similar results as those reported for the peak.

D. Flexibility with modulations in movement frequency

Participants performed 3 sequences of a non-stationary
condition at the end of the session. In this condition, the target
pace was not constant anymore but varied along a triangular
wave (except during short epochs at the beginning and end
of each trial, see Figure 10A) in order to establish that the
participant kept the possibility to modulate the movement
although receiving assistance. Whether our assistance method
was still effective during these non-stationary trials is also
investigated in this section.

Figure 10 shows — like Figure 8A,B,C in the “constant
frequency” condition — the evolution of the cycle duration
and amplitude across the cycles in the “variable frequency”
condition. Panel B also shows the target duration, thus cor-
responding to the inverse of the target frequency represented
in Panel A. This illustrates that participants performed well in
this condition, moving with a constant amplitude but varying
the cycle duration. Finally, Panel C shows the error between
the target and the actual duration, reflecting that the cycle
duration slightly diverged from the target for slow durations.
The variability of this error depended on the condition/level
of assistance (same 4 levels as before), as assessed by a one-
way ANOVA, although it was near the statistical threshold:
F (3, 28) = 3.7, p < 0.03. Post-hoc analysis only revealed a
significant difference between the “no-exo” condition and the
“variable frequency” condition with� = 0.5, this last being
more variable. In sum, participants performed the trackingof
the target pace with the same level of accuracy in the “variable
frequency” condition whatever the level of assistance. This
performance was also very similar to the tracking performance

Fig. 11. Maximum of the measured EMG for the biceps (left panel)and
triceps (right panel). The figure shows the middle 48 cycles ofeach trial of
the “variable frequency” condition (trials 1, 3, and 5 —� = 0 — pooled
in dash-dotted blue, trial 2 —� = 0.33 — in dashed purple, and trial 4 —
� = 0.5 — in solid orange). The 3 sequences were pooled together. Shaded
areas represent the between-participants SEM. The stars denote the cycle for
which the one-way ANOVA (level of assistance as factor) was significant
with p < 0.05. The gray inset shows the variation of the target frequency
(see Figure 10A).

in the standard condition, i.e. not wearing the exoskeleton.
The adaptive oscillator managed to track the movement

parameters with the same level of performance as within
the “constant frequency” condition, although with some de-
lay caused by the adaptation dynamics (see Figure 7B for
a representative trial showing the frequency estimate). The
resulting estimates of the movement kinematic profiles were
consequently very good as well. These data are not shown
for the sake of brevity, but this will be indirectly proved
by showing again a marked decrease in the EMG profiles
with assistance, therefore illustrating the proper working of
the oscillator-based torque estimator.

Figure 11 shows the evolution of the EMG peak across
the cycles for the three levels of assistance. The graphs
were superimposed to facilitate the visual comparison between
the different levels of assistance. It clearly appears thatthe
assistance torque facilitated the movement, since both the
biceps and the triceps EMG decreased when some assistance
was provided. The EMG peaks also varied depending on the
target pace, since faster movements required bigger effort.
Due to this modulation, it did not make sense to average the
data to compute ANOVAs. Therefore, we computed a one-
way ANOVA for each cycle, with the level of assistance as
single factor (3 levels). Stars in Figure 11 indicate the cycles
for which the ANOVA was significant withp < 0.05, i.e. all
for the triceps, and all but the slowest cycles for the biceps.
In sum, this illustrates that the exoskeleton still provided
assistance to the participant when the movement pace was
not stationary.

IV. D ISCUSSION

This paper introduces a new method for providing assistance
during the execution of rhythmic movements, based on the
synchronization between the user’s movement and an adaptive
oscillator. Synchronization between the user and a compliant
robot is an important issue when both have to act in synergy.
In [45], Aoyagi et al. showed that a synchronization mecha-
nism was necessary to control a lower-leg highly compliant
exoskeleton, even if it played-back the average trajectory
recorded on the participant itself during free walking. The
frequency adaptation mechanism they used was based on a
heuristic approach, while here we propose to consider the
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biological joint controller (i.e. the CPG) and its assistive
artificial counterpart as two oscillators whose synchronization
is achieved through dynamical coupling. In our approach, the
adaptive oscillator is used as a state observer (or estimator),
in the sense that it acts like a filter on the input signal.
Interestingly, Kuo proposed a similar role for the biological
oscillator (i.e. CPG) during execution of rhythmic movements
[46].

The proposed method, primarily thought for locomotion
tasks, is validated here by taking into account a cyclical
movement of the human elbow around the upright position.
The input signal (i.e. elbow position) is assumed to containa
single harmonic, such that a single specific oscillator is used
accordingly. Experimental results show that the pattern exe-
cuted by the participants is not perfectly sinusoidal, although
Figure 6 reveals that the adaptive oscillator output captures
only the main harmonic of the input signal (this is particularly
visible from the acceleration profile). Moreover, the inverse
model that is used to compute the torque needed to move the
exoskeleton and the user’s forearm, is only a rough estimateof
the actual dynamics. In fact, static friction and stiffnesswere
neglected, and the user’s anthropometric parameters (i.e.upper
limb mass, inertia and length) were crudely estimated basedon
Winter’s standard tables [35]. Despite these shortcomings, the
method is efficient since all participants were able to flexibly
adapt and take advantage of the assistance they received.
This robustness is due to the fact that the assistive algorithm
is designed to amplify the user torque. Even if the inverse
model is not accurate, the user will nevertheless receive some
assistance (with level∕= �). The participant comfort is optimal
if both torques are in phase.

Besides the capability of the control system to learn the
user’s movement features and to adapt to their changes, the
learning ability of humans also plays a fundamental role. Not
only does the assistive exoskeleton adapt its behavior to the
user’s intention, but also the user itself adapts its behavior
to the provided assistance, as shown by the re-modulation of
the EMG activity. Regarding the kinematic profiles, Figure
8A,B,C shows that switching the assistance on and off in-
duces some transients in the quality of the position-velocity-
acceleration estimates. This is likely due to the fact that the
movement itself changes during these transitory phases. For
example, switching the assistance on makes all participants
willing to accelerate the movement, and it takes a few cycles
to retrieve the nominal tempo. Due to the oscillator inertia,
which depends on the adaptation parameters, these abrupt
changes require about 10 cycles for the oscillator to get
back to the steady-state level of performance. Analysis of
the pattern kinematics further reveals that the movement is
more symmetrical (and thus more sinusoidal) when assistance
is provided. We believe this is an effect of the assistance itself,
which is designed assuming sinusoidal movement and in turn
provides a quasi-sinusoidal torque. Nonetheless, the executed
pattern stays very similar across conditions.

Further insights about the cross-adaptation raise from the
analysis of the muscles activation. The most striking difference
between the not assisted and assisted conditions is the surface-
EMG measured for the biceps and triceps. Not only do we

demonstrate a reduction of the EMG level when the assistance
is provided, but we also show that this level goes below the
level of the control condition, where the participants do not
wear the exoskeleton. Few robotic systems in the state-of-
the-art reached similar performances [2], [20], [47], [48]. Our
method is the first one which obtains similar results without
being controlled by surface EMG, and therefore avoiding the
associated complex calibration and sensing issues.

Adaptation to novel dynamical environments has been ex-
tensively described in the motor control literature (see e.g.
[49]–[51]). In this study, we also demonstrate adaptation
mechanisms to a novel dynamical environment, although the
force field acting on the participant joint is created by the
joint movement itself. Moreover, the adaptation time constants
measured here are surprisingly small (about 10 cycles), andare
actually in the same order of magnitude as the adaptation time
constant of the oscillator itself.

The results of the non-stationary trials demonstrate that the
participants keep the full control of the high level features of
the movement. In particular, we show that they are able to
modulate the movement frequency along the trial, while still
receiving a substantial amount of assistance. To the best ofour
knowledge, this is the first time this result has been achieved
without needing to sense the surface EMG of the muscles
actuating the corresponding joint. The proved adaptivity of the
proposed approach in the non-stationary condition is encour-
aging for the development of novel rehabilitation protocols, in
which the reference trajectory is not pre-specified but adapts
to the user.

Complementing other approaches based on compliance [5],
[6], [52], [53], adaptation [5], [54], or adaptive learningof a
dynamical model for the task at hand [55], our method opens
new perspectives for providing assistance-as-needed based on
movement primitives. The concept of movement primitive
has been broadly emphasized to account for the organization
of complex movements in biology [56], modeling [57], and
robotics [58]. In this paper, we propose a very simple rhythmic
primitive, i.e. the adaptive oscillator, such that we obtain
encouraging results for a particular rhythmic movement, both
in steady-state and for gently varying conditions. The transfer
of our approach for designing novel rehabilitation protocols
could, for example, be beneficial for patient suffering from
muscular weakness. Indeed, our algorithm both smoothens
out the movement kinematics and provides assistance on
demand without the need of a reference trajectory. Concretely,
it could be possible to design a rehabilitative protocol to
provide assistance-as-needed by regulating the gain� (the
fraction of torque fed back to the patient) on the basis of
the ongoing performance. For example, in the first phase of
the therapy, when the patient has a lower motion capability,
the rehabilitative device provides a high assistance in order
to improve the movement performance (e.g. range of motion).
Then, at a later stage, it gradually reduces the assistance,in
order to promote the effort of the patient and, consequently,
improve the efficiency of the rehabilitative therapy. Eventually,
negative gains could also be used to make the task more
difficult. Furthermore, the degree of assistance could alsobe
modulatedwithin the cycles, e.g. to provide different support
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for different phases of the gait, using a phase estimate directly
from the adaptive oscillator (1).

Few rhythmic movements are performed by the upper limbs
in daily life situations: Examples mainly relate to sports —like
rowing — or entertainment — like drumming or juggling [59].
Nevertheless, this paper focuses on assistance of the forearm,
providing a proof of concept while avoiding complex issues
due to coordination or complex dynamics. Future work will
focus on adaptation of this method to more functional tasks,
like e.g. walking. This would require careful explorations
dealing with non-sinusoidal patterns, interactions with the
ground, and coordination between multiple joints. The first
issue could be solved by augmenting the filter with a pool of
adaptive oscillators, each learning a different harmonic [31],
or using a non-linear kernel filter to shape the signal envelope
[32]. Issues related to ground contacts could be solved by
developing a model-free version of our approach. Finally, a
more sophisticated solution will have to be found to avoid
the tracking of the offset (low frequency) component by the
oscillator, since reseting the oscillator frequency mightcreate
discomfort in a walking experiment.

V. CONCLUSION

In this paper, we proposed a new method for providing as-
sistance during the execution of rhythmic movements, focusing
on the elbow as a proof of concept. Our approach was based
on an adaptive oscillator [27], which acted as a state observer
(or estimator) to learn and smoothen the high-level features of
the signal of interest, but keeping the output in phase with the
input. As main results, we showed that (i) the muscles EMG
decreased when the assistance was switched on, revealing
that the participants produced less effort to perform the same
movement; (ii) participants nevertheless kept full control of
the movement features, since they were able to modulate the
movement frequency on-line; (iii) even in this non-stationary
condition, participants still received assistance; and (iv) the
human adaptation to this assisted environment was surprisingly
fast — about 10 cycles — and required simple sensors (only
the raw assisted joint position needs to be measured) and only
crude modelling of the joint dynamics. These results illustrated
the cross adaptation between the participant and the assistance
protocol: Not only the oscillator adapted to the participant
behavior, but also that the participant adapted to the assisted
regime, by reducing both biceps and triceps activity.
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