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Abstract    
This paper addresses the problem of modelling, control, and simulation of a mechanical system actuated by an ago-

nist-antagonist musculotendon subsystem. Contraction dynamics is given by case I of Zajac’s model. Saturated semi positive 
proportional-derivative-type controllers with switching as neural excitation inputs are proposed. Stability theory of switched 
system and SOSTOOLS, which is a sum of squares optimization toolbox of Matlab, are used to determine the stability of the 
obtained closed-loop system. To corroborate the obtained theoretical results numerical simulations are carried out. As additional 
contribution, the discussed ideas are applied to the biomimetic control of a DC motor, i.e., the position control is addressed 
assuming the presence of musculotendon actuators. Real-experiments corroborate the expected results. 
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1  Introduction 

To achieve the motion of body segments, such as a 
human leg or arm, a set of forces acting on them need to 
be known. These forces are produced by skeletal mus-
cles, whose actions are individually controlled by central 
nervous system through neural excitation[1]. 

Several mathematical models that try to define the 
muscle contraction properties can be found in the lit-
erature. Two very important models were proposed by 
Hill[2] and Huxley[3]. Epstein and Herzog[4] used the 
biomechanical model proposed by Zajac in 1989[1] to 
model the contraction dynamics. This is a Hill-type 
dynamical model that describes how muscle and tendon 
work together to produce and transmit the force to the 
body segments, which is referred as musculotendon 
model. The Zajac’s model with some adaptations has 
been successfully used in other works to model the dy-
namics of mechanical systems[5–7]. A musculoskeletal 
system is composed of mechanical structure (skeleton 
bones) and musculotendon actuators. Such system can 
be studied from the control theory point of view by de-
fining inputs and outputs, so that by manipulating the 
input, the output is forced to be a desired one. 

In a musculoskeletal system the number of muscles 
(inputs) is greater than the number of degrees of freedom. 
The simplest representation of a musculoskeletal system 
consists of two musculotendon actuators that interact 
against a common load in agonist-antagonist relation-
ship[6,8–10]. 

The position and velocity are the outputs of a 
musculoskeletal system, and the input is the neural ex-
citation u(t) of each muscle involved in the motion. The 
control problem is to design the input u(t), such that the 
mechanical system tends to a constant desired position 
as time increases. Zajac’s model considers that the neu-
ral excitation is presented in the set u(t)∈[0,1]. 

The design of controllers for mechanical system 
equipped with musculotendon actuators is nowadays an 
important topic in biomedical sciences, biomechanics 
and control system engineering. Next, a brief chrono-
logical literature review is provided. By using Zajac’s 
model the musculotendon model reported in Ref. [1], 
Pandy et al.[11] introduced an optimal control approach to 
find the neural control input for maximum height human 
jumping. Similarly, in Menegaldo’s research[7], optimal 
control theory was also suggested. However, unless a 
problem has special structures, such as the linear,  
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unconstrained models that produce the classic Lin-
ear-Quadratic (LQ) regulator, the evaluation and online 
implementation of an optimal feedback control presents a 
difficult challenge. The paper proposed a Propor-
tional-Integral-Derivative (PID) controller of a 
bio-mechanical model[12]. Although passive and active 
viscoelastic feedback from Hill-type muscle formulation 
is taken into account, problem of generating 
semi-positive control inputs for the musculotendon ac-
tuators was not unaddressed. Tahara  et al.[13] showed the 
modelling and control of a kind of musculoskeletal sys-
tem, where the muscle model is based on Hill’s model. 
The control system consisted in generating semi-positive 
activation levels to stabilize the position. Moody  et al.[14] 
proposed an elasto-dynamic model of the human arm that 
includes effects of neuro-muscular control upon elastic 
deformation in the limb. Muscle forces derived from a 
Hill-type model of musculotendon dynamics are as-
sumed. To control the arm motion, neural feedback and 
feedforward control is proposed. Laczko et al.[15] took a 
different approach which specifically introduced muscle 
activity patterns for generating desired angular changes 
in the human arm and in the lower limb. 

As shown in the literature review, a few works have 
presented a solution for the stabilization problem of 
mechanical systems actuated by musculotendon actua-
tors taking into account the saturated semi positive con-
straint of the neural excitation u(t)∈[0,1]. 

To the best of the authors’ knowledge, the idea that 
the control input u(t)∈[0,1] can be designed by using a 
new switched control systems approach. Specifically, in 
this paper, saturated semi positive control inputs are 
generated by a commutation control law, which converts 
the closed-loop system into a switched system that be-
longs to the class called hybrid systems. Since many of 
the systems encountered in practice are of hybrid nature, 
in the last few years, this kind of systems have been an 
interdisciplinary and very active area of research[16]. 
Hybrid system theory facilitates the study of complex 
systems by decomposing them into simpler systems and 
by allowing the use of well-known control tools as 
Lyapunov theory. 

The stability of a switched system under arbitrary 
switching can be achieved by finding a single Lyapunov 
function whose derivative along solutions of all sub-
systems satisfies the inequalities of the Lyapunov’s di-
rect method. Such function is called common Lyapunov 

function[16–18]. Due to the high order and nonlinearity of 
the systems studied here, it is extremely difficult to find 
a common Lyapunov function in a generalized way. To 
find a numerical solution, SOSTOOLS is used, which is 
a free MATLAB toolbox for formulating and solving 
sums of squares optimization programs[18–20]. 

On the other hand, researchers are looking in cup-
boards and under rocks for biological inspiration to 
create a new generation of flying, crawling, and swim-
ming automatons known as biomimetic robots. It has 
been expected that the robots will be able to cowork and 
coexist with a human at home or a workspace in the near 
future. However, no matter how similar to a human be-
ing in appearance the robot is, it is very difficult to co-
work with a human in daily activities if it cannot act or 
perform a task with human-like movements. Hence  
the importance of the development of control strategies 
is to obtain biomimetic behavior of the mechanical sys-
tem, which has particular applications in humanoids 
robots. 

The main contributions of the study presented in 
this paper are: (1) The modelling of a biomechanical 
systems where musculotendon actuators are used; (2) A 
new control law based on switched system theory, which 
guarantees that the produced control action is semi 
positive; (3) The application of the proposed ideas in the 
biomimetic control of a DC motor[21]. In this respect, the 
position control of the motor shaft is addressed assuming 
the presence of musculotendon actuators. Real-time 
experiments corroborate the expected results. 

This paper is organized as follows. Section 2 de-
scribes the biomechanical model to be controlled. In 
section 3, the results related to the saturated control of 
the derived biomechanical system are given. In section 4, 
the proposed switched control law is applied to the 
control of a DC motor assuming that it is actuated by 
musculotendons. Real-time experiments are also de-
scribed. Finally, concluding remarks are drawn in sec-
tion 5. 

2  Development of the biomechanical model 
and control goal 

In this section we present the derivation of a bio-
mechanical model and the equations of the model. Then 
the equations for the activation and musculotendon 
contraction subsystems are provided. The formulation of 
the control objective is also introduced. 
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2.1  Mechanical subsystem 
The dynamics of the mechanical subsystem, as 

shown in Fig. 1, is given by  

T T
1 1 1 2 ,vMx F x F F+ = −                       (1) 

where M (kg) is the mass of mechanical subsystem, Fv 

(kg·m·s−1) is the viscosity, x1 = L1
MT (m) is the length of 

actuator 1, is the velocity of actuator 1, F1
T (N) is the 

force developed by actuator 1 and F2
T (N) is the force 

developed by actuator 2. Let us notice that in the ago-
nist-antagonist relationship, the net force that acts on the 
load is given by F1

T − F2
T (see for example Ref. [8]).  

Let us consider the system described in Fig. 1. This 
case study considers that L = constant, i.e., one muscle 
lengthens as the agonist while the other contracts as the 
antagonist. In this way, the relationship between lengths 
L1

MT and L2
MT and velocities V1

MT, and V2
MT is obtained. 

Specifically, the length of actuator 1 is given by x1= 
L1

MT, then, in consideration of Fig. 1, the length of ac-
tuator 2 is 

1 1,x L x′= −                                (2) 

where L is distance between the points of attaching of 
one actuator to the another. Being xd > 0 the desired 
position of the mass, it is possible to define the desired 
position of the mass with respect to the origin of actuator 
2 as  

d d .x L x′ = −                                  (3) 

Using Eq. (2), the position error is defined as  

MT
1 d 1 d 1 ,x x x x L= − = −                       (4) 

where 0 < xd < L is the desired position of the mass with 
respect to the origin of actuator 1 and x1 is the position of 
the mass. The position error with respect to actuator 2 can 
be computed as 1 d 1 d 1 1.x x x x x x′ ′ ′= − = − + = − As expected, 
the position errors 1x  and 1x′have opposite signs. 
 

u1

MT actutor 1 Viscosity MT actutor 2

x1 x'1
L

Fv

F1
T F2

T Mechanical 
system

M

u2

 
Fig. 1  Agonist-antagonist musculotendon pair acting on a com-
mon mass-damper system. 

2.2  Zajac’s model 
In this model, the input u(t) is the net neural input to 

the muscle, and the output FT(t) is the tendon force (see 
Fig. 2).  

The force FT(t) developed by the actuator depends 
on the velocity VMT(t) and the length LMT(t), which are 
determined from the position of the body segments 
(mechanical system). At the same time, the dynamics of 
the body segments depends on the force FT(t) developed 
by the musculotendon actuator. The dynamics of the 
musculotendon actuator is composed of activation dy-
namics and musculotendon contraction dynamics (see 
Fig. 2). In the original work, Zajac presented the ob-
tained model in normalized quantities with the optimal 
muscle length L0

M, the maximum shortening velocity Vm 
and the maximum active force F0

M produced by the 
muscle in an isometric contraction. 
 

Musculotendon actuator
Neural 

excitation
u(t) Activation 

dynamics
α(t) Musculotendon 

contraction 
dynamics

FT(t) LMT(t)
VMT(t)

Mechanical 
system

 
Fig. 2  Block diagram that shows the interaction of tendon and 
muscle with a mechanical system. 
 
2.3  Activation dynamics subsystem 

The activation in the musculotendon model is a 
variable that affects only the muscle and is given as  

act act

d ( ) 1 1[ [1 ] ( )] ( ) ( ),
d
a t u t a t u t

t
β β

τ τ
⎡ ⎤

+ + − =⎢ ⎥
⎣ ⎦

     (5) 

where a(t) is the muscle activation, with constraint  
0 ≤ a(t) ≤ 1. The value a(t) = 1 indicates that the muscle 
is fully activated, and a(t) = 0 fully deactivated. u(t) is 
the neural excitation, which denotes the control input, 
with constraint 0 ≤ u(t) ≤ 1. τact is the time constant when 
muscle is fully excited (u(t) = 1). β ≡ τact/τdact, where τdact 
is the time constant when muscle is fully deactivated 
(u(t)=0), 0 < β < 1. 

An examination of the term in the brackets shows 
that when the muscle is fully activated, i.e., u(t) = 1, the 
time constant of a(t) is given by τact. However, when the 
muscle is fully deactivated, i.e., when u(t) = 0, the time 
constant is τact/β. One consequence of this model is that 
active isometric force rises faster during excitation than 
it falls during relaxation, a property that has been well 
studied[2,22]. 
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2.4  Musculotendon contraction dynamics subsystem 
The essential part of the Zajac’s model is the force 

dynamics, also named musculotendon contraction dy-
namics. Musculotendon contraction represents the inte-
grated dynamical process of muscle and tendon working 
together[1]. 

By assuming that the line of action of the muscle 
fibers is parallel to the line of action of the tendon, the 
musculotendon contraction dynamics is written in its 
normalized form as  

T
T MT M M Td [ ( , , ( ))],

d
F k V V L F a τ
τ

= −           (6) 

where                       
T

T M
M

0

,FF F
F

= =                          (7) 

with F0
M the peak isometrix active force, is the normal-

ized tendon force which is equal to the normalized 
muscle force,  

1( )
c

tτ
τ

=                                   (8) 

is the normalized time,  

M
T T 0

M
0

( )
L

k k
F

=                              (9) 

is the normalized tendon stiffness,  

MT MT 1( )
m

V V
V

=                            (10) 

is the normalized MT velocity, and  

M M T( , , ( ))V f L F a τ=                     (11) 

is the normalized muscle velocity for a given fiber length, 
muscle force and activation level (called Force-Velocity- 
Length relationship (FVL) of a Hill-type model). 

 
2.5  Case I: Flat region of the force-length curve 

The case I presented in Ref. [1] is the model of the 
contraction dynamics Eq. (6) when the muscle operates 
at the flat region of its force-length curve. Thus, the 
linear relationship FVL is given by  

M M( ) ,V a Fτ− = −                            (12) 

where a(τ) is the activation level as a function of the 
normalized time τ. 

The musculotendon contraction dynamics of case I 
is obtained by replacement of Eq. (12) in Eq. (6)  

T
T T T MTd [ ( )].

d
F k F k V a τ
τ

+ = +            (13) 

Eq. (13) is normalized with L0
M, F0

M and Vm. To work 
with dimensional quantities, by using the definitions of 
Eqs. (7)–(11), and take into account that the linear ap-
proximation for Tk in Eq. (13), which was defined in 
Ref. [1] as Tk = 30 M

0L / T
sL , where T

sL  is the tendon slack 
length, then Eq. (13) is rewritten as  

M MT
T MT0 0

T T T

30 30 30d ( ),
d

m m

s s s

V F F VF F V a t
t L L L
= − + +    (14) 

where FT is the musculotendon actuator force, a(t) is the 
activation level defined in Eq. (5). 

 
2.6  State variables of the overall biomechanical system 

By using Eqs. (1), (4), (5) and (14), the open-loop 
system can be written as  

2

1 3 4 2

2
01 01 1

2 5 33
1 1 1

4
02 02 2

2 6 45
2 2 2

6
31 21 5 1 11 5

32 22 6 2 12 6

1 [ ]

30 30 30
d
d

30 30 30

[ ] ( )
[ ] ( )

v

M M
m

T T T
s s s

M M
m

T T T
s s s

x

x x x F x
M

x
F F V

x x xx L L L
t x

F F V
x x xx L L L

x c c x u t c x
c c x u t c x

−⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ − −
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ + −⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − + −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢⎣ ⎦ − −
⎢
⎢ − −⎣ ⎦

,

⎥
⎥
⎥

  (15) 

where 2 1x x= , actp dactp/pβ τ τ= , T
3 1x F= , 1 actp/p pc tβ= , 

T
4 2x F= , 2 actp(1 ) /p pc tβ= − , 5 1( )x a t= , 3 actp1 /pc t= , 

6 2 ( )x a t= , with p = 1, 2. 
 
2.7  Control objective 

Considering the biomechanical system Eq. (15), the 
control problem revolves around the design of con-
strained neural control inputs  

u1(t), u2(t) ∈ [0,1],                     (16) 

such that for some bounded set of initial conditions 
T

1 2 3 4 5 6 a[ (0) (0) (0) (0) (0) (0)]x x x x x x ∈R , the limit  

1lim ( ) 0
t

x t
∞→

=                             (17) 

is satisfied, where 1x  denotes the position error, which 
was defined in Eq. (4). The set Ra is defined as the do-
main of attraction of the system Eq. (15). In other words, 
the set Ra is such that the limit of every trajectory of  
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Eq. (15) starting in Ra is the equilibrium point. For the 
sake of shortening, the computation of the domain of 
attraction is not considered in this paper. 

3  Control of the biomechanical model 

The control of the biomechanical system Eq. (15) is 
studied in this section. In order to introduce the proposed 
controller, some mathematical preliminaries on switched 
systems are provided. Then, the control laws u1, u2, to 
satisfy the control objective Eq. (17) are introduced. The 
stability of the resulting closed-loop system and nu-
merical results are discussed also. 

 
3.1  Stability of switched systems 

Systems that have dynamics that are described by a 
set of continuous time differential equations in con-
junction with a discrete event process are usually re-
ferred to as switched or hybrid systems. Such systems 
are of the form:  

, {1,.. ,) .,( }i i N= ∈ =x f Ix                  (18) 
where n∈x R  is the continuous state, N is the number of 
components of the family of vector field fi(x), i is the 
discrete state, fi(x) is the vector field describing the dy-
namics of the ith mode/subsystem, and I is the index set. 
The difference between switched and hybrid systems is 
that in the former only one i ∈ I is possible for each 

n∈x R , and in the later multiple i are possible for some 
n∈x R . Without loss of generality, we assume that the 

state space origin 0 n= ∈x R  is an equilibrium point[18]. 
This study focuses on switched systems, where 

switching events can be classified into state-dependent 
or time-dependent (see Ref. [16]). 

According to switched systems theory, local sta-
bility of system Eq. (18) under arbitrary switching can 
be studied using the following theorems: 

Theorem 1: [Theorem 1 in Ref. [18]] Suppose that 
for the set of vector fields {fi(x)} there exists a polyno-
mial V(x) such that V(0) = 0 and  

( ) 0    0,V > ∀ ≠x x                             (19) 

( ) 0    0, .i
V i∂

< ∀ ≠ ∈
∂
f x x I

x
                    (20) 

Then the origin of the state space of the system Eq. (18) is 
globally asymptotically stable under arbitrary switching.  

Theorem 2: [Theorem 1 in Ref. [17]] If the differ-
ential equations corresponding to the linearization of 

system Eq. (18) are (asymptotically) stable in x0 and 
have the same quadratic Lyapunov function, then the 
system Eq. (18) is (asymptotically) stable in x0. 
 
3.2  Switching control law for the controllers u1(t) 

and u2(t)  
In this section we explain how our solution satisfies 

the condition Eq. (16) and accomplishes the control 
objective Eq. (17). Let us recall the well-known Pro-
portional-Derivative (PD) controller:  

1 2 ,p vP xD k k x= −                       (21) 

where 1x  is the position error of the mass, x2 is the ve-
locity and kp, kv > 0. 

In order to satisfy the constraint Eq. (16) in u1(t) 
and u2(t), the PD controller Eq.(21) can be used in the 
switching control law:  

1
1

tanh( ) if  0,
( )

0 if  0,
PD PD

u t
PD

μ ≥⎧
= ⎨ <⎩

           (22) 

where u1(t) ∈ [0,1] is the input for actuator 1, and μ1 > 0, 
and  

2
2

0 if  0,
( )

tanh( ) if  0,
PD

u t
PD PDμ

<⎧
= ⎨− ≥⎩

          (23) 

where u2(t) ∈ [0,1] is the input for the actuator 1, and  
μ2 > 0. 

The switching between the control inputs depends 
on the sign of PD controller Eq. (21), which in turn 
depends on the state variables 1x  and x2. Thus, Eqs. (22) 
and (23) define a switched control law, which accom-
plishes the constraint Eq. (16), for the system Eq. (15). 

 
3.3  Feedback control system 

With the control inputs Eqs. (22) and (23) the 
open-loop system Eq. (15) turns into two feedback 
subsystems f1(x) and f2(x), which commute by the 
switching law:  

1

2

( ) if 0,
( )

( ) if 0.
PD
PD

≥⎧
= = ⎨ <⎩

f x
x f x

f x
            (24) 

System Eq. (24) operates in the subsystem f1(x) for 
nonnegative values of PD (with u1(t) ∈ [0,1] and u2(t) = 
0), and operates in the subsystem f2(x) for negative 
values of PD (with u1(t) =0 and u2(t) ∈ [0,1]). Fig. 3 
shows a block diagram of the system Eq. (24).  
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Fig. 3  Block diagram that represents the feedback control system Eq. (24). 

 
Given the control inputs u1(t) and u2(t), the obtained 

feedback system Eq. (24) is a state-dependent switched 
system, where switching depends on the state variables 

1x  and x2. In other words, the system Eq. (24) has the 
form of Eq. (18), with i ∈ I = {1,2}, i.e., the system 
consists of two operating regions: region 1 if PD ≥ 0, and 
region 2 if PD < 0. 

According to Theorems 1 and 2, the state space 
origin 0 n= ∈x R  of the nonlinear system Eq. (24) is a 
locally (asymptotically) stable equilibrium point if the 
linearized system is (asymptotically) stable. 

The state space origin 0 n= ∈x R  is a common 
equilibrium point of the subsystems f1(x) and f2(x). By 
linearizing the system Eq. (24) around 0 n= ∈x R , we 
obtain the following switched system:  

1

2

if  0,
if  0,

PD
PD

≥⎧
= ⎨ <⎩

A x
x

A x
                          (25) 

where PD is given in Eq. (21), and  

12

22 23 24

32 33 35
1

42 44 46

51 52 55

66

0 0 0 0 0
0 0 0
0 0 0 ,0 0 0

0 0 0
0 0 0 0 0

a
a a a
a a a
a a a

a a a
a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A  

12

22 23 24

32 33 35
2

42 44 46

55

61 62 66

0 0 0 0 0
0 0 0
0 0 0 ,0 0 0
0 0 0 0 0

0 0 0

b
b b b
b b b
b b b

b
b b b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A  

 

where a12 = –1, a22 = −Fv /M, a23 = 1/M , a24 = −1/M,  

a32 = M T
01 130 / sF L , a33 = T

1 130 /m sV L− , a35 = M T
01 1 130 /m sF V L , 

a42 = M T
02 230 / sF L− ,a44 = T

2 230 /m sV L− , a51 = c31kp,  
a46= M T

02 2 230 /m sF V L , a52 = −c31kv, a55 = −c11, a66 = −c12; 
b12 = −1, b22 = −Fv /M , b23 = 1/M , b24 = −1/M,  

b32 = M T
01 130 / sF L , b33 = T

1 130 /m sV L− , b35 = M T
01 1 130 /m sF V L , 

b42= M T
02 230 / sF L− ,b44 = T

2 230 /m sV L− , b46= M T
02 2 230 /m sF V L , 

b55 = −c11, b61 = −c32kp, b62 = c32kv, b66 = −c12.  
The problem is to find a common Lyapunov func-

tion V(x) that satisfies the conditions Eqs. (19) and (20) 
for the linearized system Eq. (25). A numeric common 
Lyapunov function is obtained with the purpose of 
proving that the system Eq. (25) is asymptotically stable. 

 
3.3.1  Numerical case study 

First, let us notice that a necessary condition for 
(asymptotic) stability under arbitrary switching is that all 
of the individual subsystems are (asymptotically) stable 
[23]. Thus, using the root locus of the characteristic 
equation of each subsystem  

, 1,2.i i= =x A x  

We have computed numerical values of μ1, μ2 , kp and kv 
such that Ai, i = 1, 2, are Hurwitz. 

The roots of a characteristic equation are obtained 
by solving  

[ ]6det 0.iλ − =I A                     (26) 

The linear subsystem i=x A x  is asymptotically stable if  

( { }) 0     {1,2,...,6}, {1,2}.j i j iλ < ∀ = ∈ =A IR      (27) 

To prove the effectiveness of the proposed control law, a 
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numerical case is presented. For such purpose, identical 
actuators are considered. The numerical parameters M

0L , 
M
sL  and M

0F  of the brachioradialis muscle presented in 
Ref. [24] are used. The values for τc, τact and τdact are 
taken from Ref. [1]: M

0 pL  =0.2703 cm, τc =0.1 s, M
0 pF  = 

101.58 N, τactp = 0.015 s, T
spL  =0.0604 cm, τdactp =0.050 s, 

where p = 1,2. Mass M and viscosity Fv are proposed as: 
M = 3.8 kg, Fv = 1 kg·m·s−1. With the root locus of the 
individual characteristic equations in Eq.(26), we pro-
pose the parameters μ1, μ2, kp and kv for the control inputs 
u1(t) and u2(t): μ1 = 1, kp = 0.003, μ2 = 1, kv = 0.23. The 
proposed parameters μ1, μ2, kp and kv, allow us to satisfy 
the local stability condition Eq. (27). Small values of the 
mass and the viscosity can be used in the musculotendon 
actuators by using small values of parameter M

0F . 
 
3.3.2  Using SOSTOOLS to find a common Lyapunov 
function 

Once obtained the stability conditions for the 
 individual subsystems i=x A x  (i = 1, 2) of Eq. (25), a 
common Lyapunov function V(x) that satisfies the ine-
qualities Eqs. (19) and (20) is constructed. Such a func-
tion is obtained by using SOSTOOLS[20] and can be 
written as follows:  

T 6 T 6 6( ) ,  ,  0,  ,x ×= ∈ = > ∈V x x Px P P PR R      (28) 

and        

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

,

p p p p p p
p p p p p p
p p p p p p
p p p p p p
p p p p p p
p p p p p p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P       (29) 

where p11 = 0.20831, p12 = p21 = −0.21327, p13 = p31 = 
−0.42936×10−4, p14 = p41 = 0.42936×10−4, p15 = p51 =  
p16 = p61= −0.28448, p22 = 0.46856, p23 = p32 = 
0.09139×10−3, p33 = p44 = 0.58872×10−7, p24 = p42 = 
−0.09139×10−3, p34 = p43 = −0.22359×10−7, p25 = p52 = 
0.6145, p26 = p62 = −0.6145, p35 = p53 = p46 = p64 = 
0.11783×10−3, p36 = p63 = p45 = p54 = −0.12188×10−3,  
p55 = p66 = 0.82876, p56 = p65 = −0.8258. 

The common Lyapunov function Eq. (28), with P in 
Eq. (29), leads to the conclusion that, by Theorem 1, the 
state space origin 60= ∈x R of the the switched system 
Eq. (25) is asymptotically stable. Therefore, according 
to Theorem 2, the state space origin 60= ∈x R of the 
system Eq. (24) is locally asymptotically stable. 

3.4  Results and discussions 
With the obtained local stability of the system 

Eq.(24), a simulation using Matlab is presented. In this 
simulation the system initial conditions are equal to zero, 
except for the position error, which starts with a value of 

1(0)x  = 0.05 m. With these initial conditions the system 
starts in the region 1. 

Fig. 4 shows the position error 1( )x t . The saturated 
control inputs u1(t) and u2(t) ∈ [0,1] are shown in Fig. 5. 
The graph to compare the function V(x) evaluated along 
the systems Eq. (24) (dashed line) and Eq. (25) (con-
tinuous line) is presented in Fig. 6. In this figure, vertical 
lines indicate the switching between regions 1 and 2 for 
the systems Eq. (24) (dashed line) and Eq. (25) (con-
tinuous line). 
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Fig. 4  Position error 1( ).x t  
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Fig. 5  Time history of the musculotendon control inputs u1(t) and 
u2(t). 
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Fig. 6  Common Lyapunov function V(x). 

 
It is worthwhile to notice that several sets of control 

parameters μ1, μ2, kp and kv that rendered the closed-loop 
system Eqs. (15) – (23) locally asymptotically stable 
were found. For each one of those sets of control pa-
rameters, a common Lyapunov function was obtained, 
while the necessary condition of Hurwitz matrices A1 
and A2 was also achieved. 

With respect to the present example, which con-
sidered two identical musculotendon actuators, the fol-
lowing observations on the tuning of control gains kp and 
kv are in order: (1) Numerical value in the gain kp is lower 
than the one used to produce a reduction in the oscilla-
tions of the error position 1( ),x t i.e., the closed-loop 
system Eqs. (15) – (23) become “more stable”. (2) 
However, although a smoothed response is obtained, the 
reduction of kp increases the settling time. (3) With a 
larger numerical value of kp, oscillations of the error 
position 1( )x t are increased and even instability is ob-
served. (4) For a fixed kp, increasing the gain kv seems to 
make the system more stable since the roots of the 
characteristic equation of A1 and A2 move to the left 
half-plane of the complex plane. The opposite effect is 
observed with reduction of kv. 

Although some insight in the tuning of the control 
parameters μ1, μ2, kp and kv, has been obtained, actually 
we are trying to obtain an analytic method to find ex-
plicit tuning bounds on those parameters. 

For this numerical case study, the numerical values 
of the control inputs u1(t) and u2(t) are small, as seen in 
Fig. 5. However, if there is a large position error 1( ),x t  
then large forces will be required in the musculotendon 
actuators, which, at the same time, will imply the ap-
plication of large neural excitation inputs u1(t) and u2(t). 

However, thanks to the incorporation of the hyperbolic 
tangent function in the switched controller Eqs. (22) – 
(23), no matter how large is the position error 1( ),x t the 
neural excitation inputs u1(t) and u2(t) will be evaluated 
into the set [0,1]. 

The studied biomechanical system Eq. (15) can be 
seen as a simplified model of a human arm. Since the 
parameters of the actuators are assumed to match the 
behavior of real human muscles[24], one would expect 
that the performed motion is smooth as done by a real 
human arm. However, the simulation shows that the 
performed motion presents oscillations that vanish as-
ymptotically as time increasing. Let us notice that a 
response without oscillations could be obtained by 
changing the selected parameters of the controller, in 
particular, by increasing the value of kv, which at the 
same time increases the damping of the overall 
closed-loop system. In the presented numerical study the 
selection of the values of the controller gains and the 
musculotendon actuator parameters is intended to show 
the ability of the control law to regulate the position of 
the biomechanical system by turning on and turning off 
the neural inputs. Besides, the numerical value of the 
mass M and the viscous friction coefficient Fv is not 
necessarily related to the physics of an human arm. 
Analogy of the proposed switched control law with 
real-time response of a human arm requires further 
study. 

An important issue is the co-contraction, which is 
defined as simultaneous activation of antagonistic mus-
cles crossing a joint. Its purpose is to augment the 
ligament function in maintenance of joint stability, pro-
vide resistance to rotation at a joint, and equalize the 
pressure distribution at the articular surface[25,26]. In 
other words, muscle co-contraction is defined as the 
simultaneous activation of antagonist and agonist mus-
cle groups of the same joint and in the same plane of 
movement. As seen in Fig. 7, both musculotendon ac-
tuators deliver force at the same time, whereby 
co-contraction is introduced by the proposed control 
scheme. The reason for the presence of co-contraction is 
that the muscle activation levels a1(t), a2(t) are kept 
positive during the time that one neural input has some 
non negative value and another is null. Thus, the activa-
tion and contraction dynamics work as memory of the 
overall musculotendon actuator. 
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Fig. 7  Time history of the force delivered by each musculotendon 
actuator x3(t), x4(t), and the total force applied to the body FT(t) = 
x3(t) − x4(t). 

4  Application for the biomimetic control of a 
DC motor 

As pointed out in Ref. [27], remarkable develop-
ments of human-shaped robots have been achieved with 
the latest progress of robotic technology in recent 
years[28,29], so that friendly feeling of human toward the 
robot is practically realized from a cosmetic point of view. 

The interest in studying muscle-tendon models that 
interact with mechanical systems as well as their control 
is to achieve applications in mechatronics and robotics 
where a biomimetic like behavior is important. Let us 
notice that robot models interconnected with mus-
cle-tendon systems have characteristics of human 
movements, which is important to generate a human-like 
behavior when controlling the humanoid robots. A re-
cent survey on biomimetic planning and controlling of 
mechanical system can be found in Ref. [21]. 

Specifically, the final goal of this section is to con-
trol a single second order mechanical system (a linear 
DC motor system) with human-like movement. The 
biomimetic behavior is obtained by considering that the 
motor model is actuated by an agonist-antagonist mus-
cle-tendon subsystem. The two neural control inputs are 
generated by the proposed commutation control law of 
Eqs. (22) and (23). Simulations and experiments show 
the viability of the proposed theory. 
 
4.1  Motor system and generalization of the muscu-

lotendon dynamics 
Let us consider the DC motor model  

( ) ( ) ( ),v xJx t F t kv t+ =                    (30) 

where x denotes the rotor position, J is rotor inertia, Fv is 
the viscous friction coefficient, and k  is the voltage to 
torque conversion factor. The voltage input v(t) is gen-
erated through F1

T(t) and F2
T(t), i.e., the outputs of two 

musculotendon actuators implemented by software. 
Specifically,  

v(t) = F1
T(t) – F2

T(t).                      (31) 

The overall model (the DC motor and the muscu-
lotendon actuators) can be written in state variables as 
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(32) 

Considering that the musculotendon actuators 1 and 
2 are identical, it is possible to generalize the open-loop 
model Eq. (32) as  
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Note that the musculotendon constants k1, k2, k3, c1, 
c2, and c3 are interpreted as parameters that govern the 
time evolution of the biomimetic controller Eq. (31). 
 
4.2  Switched control law 

To stabilize the position error 1( )x t we have used 
the switched control law Eqs. (22) and (23). Substituting 
Eqs. (22) and (23) in the open-loop system Eq. (33), we 
obtain a switched system with structure  

1

2

( ), if  0,
( )

( ), if  0.
PD
PD

≥⎧
= = ⎨ <⎩

f x
x f x

f x
         (34) 

Following the ideas in the section 3, the problem is 
to find a common Lyapunov function V(x) for the lin-
earization of the subsystems Eq. (34), which is given by  
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4.3  Experimental platform 

In order to evaluate the performance of the studied 
controllers, we have carried out real-time experiments 
on a Pittman 14207S008 DC motor driven by a servo 
amplifier model 30A20AC from Advanced Motion 
Controls, which is configured in current mode. To exe-
cute real-time experiments the motor is controlled 
through a PC and a data acquisition board Sensoray 626, 
which is used to read the quadrature optical encoder 
signals and transfer the control signal to the servo am-
plifier. Fig. 8 shows a picture of the motor and Fig. 9 
depicts a block diagram of the experimental system. 
Algorithms are executed at a sampling frequency of 1 
kHz on Windows XP using Matlab with Simulink and 
the Real-Time Windows Target. 
 

 
Fig. 8  DC motor Pittman 9236S009. 

q

 
Fig. 9  Block diagram of the experimental system. 

 
Velocity is obtained through Euler differentiation 

( ) ([ 1] )( ) ,q kT q k Tq kT
T

− −
=  

where k = 1,2,3,…,n, is the discrete time and T = 0.001 s 
is the sampling period. 
 
4.4  Tuning of the control gains and closed-loop sta-

bility 
By using the necessary condition for asymptotical 

stability under arbitrary commutation, which requires 
that the individual subsystems should be stable[23], the 
root locus method of the characteristic equation of the 
each subsystem ,  1,2,i i= =x A x is used to compute the 
numerical values of the constants μ1 , μ2, kp and kv such 
that Ai, i = 1,2 is a Hurwitz matrix. 

Some previous experiments were carried out to 
obtain estimations of the motor parameters:  
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5101.
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                            (38) 

The following parameters were selected for the muscu-
lotendon actuators:  

1 3

2

1 3

2
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k
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                       (39)  

while in the switching control law the following nu-
merical parameters  

1

2

1, 0.3,

1, 0.01,
p

v

k

k

μ

μ

= =⎧⎪
⎨

= =⎪⎩
                    (40) 

were used. It is worthwhile to remark that the physical 
sense of the parameters Eq. (39) is obtained by com-
paring Eqs. (32) and (33). Thus, k1 = 30 M

01F / T
1sL and  

k1 = 30 M
01F Vm1/ T

1sL , while c1, c2 and c3 are the parameters 
of the activation dynamics Eq. (33). The numerical 
values of the musculotendon and switching control law 
parameters in Eqs. (39) and (40), respectively, guarantee 
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that the matrices Eqs. (36) and (37) are Hurwitz. 
Next step is to show that the state space origin of 

the switched system Eq. (34) is locally asymptotically 
stable. To this aim, by using SOSTOOL, a numerical 
common Lyapunov function satisfying inequalities Eqs. 
(19) and (20) for the linearized system Eq. (35) has been 
computed. Specifically, such a common Lyapunov 
function is  

T 6 T 6 6( ) , 0, ,×= ∈ = > ∈V x x Px x P P PR R      (41) 

where   
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21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

,

p p p p p p
p p p p p p
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⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P   

in which p11 = 5142, p12 = p21 = −16.3665, p13 = p31 = 
−62.095, p14 = p41 = 62.095, p15 = p51 = −4.798, p16 = p61 

= 4.798, p22 = 3.7663, p23 = p32 =26.463, p24 = p42 = 
−26.463, p25 = p52 = 25.6495, p26 = p62 = −25.6495, p33 = 
p44 =194.98, p34 = p43 = −192.855, p35 = p53 = p46 = p64 = 
190.805, p36 = p63 = p45 = p54 = 189.795, p55 = p66 = 
192.49, p56 = p65 = 189.655. 

The function Eq. (41) allows concluding, by Theo-
rem 1, that the state space origin 60= ∈x R  of the 
switched system Eq. (35) is globally asymptotically 
stable. Then, by Theorem 2, that the state space origin 

60= ∈x R  of the nonlinear switched system Eq. (34) is 
locally asymptotically stable. 

 
4.5  Simulation and experimental results 

The specified desired position is xd = 4 rad. The 
initial conditions for the overall system are  
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We show simulation and experimental results of the 
nonlinear system Eq. (33) using the nonlinear controller 
Eqs. (22) and (23). Fig. 10 shows the time evolution of 
the motor shaft position. The control inputs u1(t), 
u2(t)∈[0,1] to the musculotendon actuators 1 and 2 are 
presented in Fig. 11. The time history of the Lyapunov 

function V(x) in Eq. (41) has been computed for the 
switched nonlinear system Eq. (34) and the continuous 
lines to the switched linearized system Eq. (35). This 
result is shown in Fig. 12, where vertical lines indicate 
the commutation time of regions 1 and 2. 

Let us notice that the initial position error (0) 4x =  
rad is relatively high. However, thanks to the incorpo-
ration of the hyperbolic tangent function, which is a 
smooth and bounded function, the switched control 
signals Eqs. (22) and (23) remain bounded for all time, 
as seen in Fig. 11. As soon as the actual position x1(t) 
goes to the desired one xd, the numerical values of the 
neural excitations u1(t) and u2(t) decrease and the 
closed-loop system becomes more stable. Finally,  
Fig. 13 shows the voltage applied to the motor, which 
also goes to zero as time increases. 
 

x 1
(r

ad
)

 
Fig. 10  Position error x1(t). 

 

 
Fig. 11  Neural excitations u1(t) and u2(t) by simulation and ex-
periment respectively.  
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Fig. 12  Common Lyapunov function V(x). The dashed lines 
correspond to the switched nonlinear system Eq. (34) and the 
continuous lines to the switched linearized system Eq. (35). 
 

 
Fig. 13  Time history of the voltage applied to the motor v(t) = 
x3(t)–x4(t) by simulation and experiment respectively. 

5  Conclusions and further research 

This work presented the modelling, control and 
simulation of a second order mechanical system actuated 
by two Zajac’s musculotendon subsystems in an agonist- 
antagonist configuration. An important assumption was 
that the musculotendon subsystems have constrained 
neural excitation inputs u1(t), u2(t) ∈ [0,1]. The stability 
theory of switched systems, the root locus method for 
linear systems, and SOSTOOLS were used to design a 
saturated semi positive neural excitation inputs u1(t) and 
u2(t), which stabilize the studied biomechanical system. 
Finally, the application of the proposed ideas to a 
mechatronic system was introduced. 

The main limitation of the proposed control ap-
proach is that it only uses information of the mass posi-
tion and velocity of the mass, that is, the controller is 
based on partial state feedback. The feedback of the 
activation levels and applied forces could increase the 
performance of the motion, because the design based on 
root-locus of the linearized subsystems in Eq. (25) 

would be easier thanks to the introduction of the more 
control gains. The incorporation of a state observer and 
the respective stability analysis is a topic that deserves 
study also. 

Let us notice that the development of an extension 
of the proposed approach to the trajectory tracking con-
trol is still in study. However, simulations have shown 
that the introduced control scheme can guarantee uni-
form ultimate boundedness of the trajectory tracking 
error 1( )x t . Besides, the ultimate bound of the trajectory 
tracking error is inversely proportional to the values of 
the control gains. In other words, the greater the values 
of the gains, the lower the value of the ultimate bound. 
Notwithstanding, at this time the mathematical proof of 
this claim requires more refinement. 

Another problem that has been considered as fur-
ther research is the relationship of the proposed control 
approach with the actual control of a real human arm. In 
this respect, the proposed controller could be interpreted 
as a system for which identification of the control gains 
from electromyographic signals could be achieved, 
which would support the idea that the controller pro-
grammed in the human body belongs to the class of 
switched systems. 
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