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Abstract— Now more than ever, progresses in information
technology applied to rehabilitation robotics give new hopes to
people recovering from different kinds of diseases and injuries.
Beside the standard application of EMG signals to analyze
disabilities or to track progress in rehabilitation, more focus
has been put on controlling robot arms and exoskeletons.
In recent years, biomechanists have developed very complex
neuromusculoskeletal (NM) models of human joints to under-
stand how the nervous system controls muscles and generates
movements. Aware of these potentials, we have started a process
of simplification to obtain a NM model suitable for the real-
time control for a lower extremity exoskeleton. In this paper
we present the NM model for the knee previously developed
by Lloyd et al. [1]. We then investigate the effects of assuming
the tendon infinitely stiff and show how this simplification does
not affect the capacity of the model to predict muscle force and
joint moment. We also assess the decrease in processing time
required to calibrate the model and perform runtime estimates
of muscles. Finally, we illustrate the implications of our research
for the health care economic and social systems.

I. INTRODUCTION

The significant aging of population, with the associated
increase in injuries and disabilities, calls for new solutions
to health care. Elderly should be able to stay at home
longer, thus reducing the cost of elderly care. People with
disabilities, whose numbers are on the rise, should be able
to continue to work to maintain the workforce productivity.

Mobility represents a basic need that has to be guaranteed
to ensure independence and to boost the integration of disable
people in the society. An effective way to strength and restore
mobility and to improve coordination is the musculoskeletal
therapy. Despite its effectiveness, access to these treatments
is still limited because they are quite expensive as they
continuously require the knowledge and skills of several
trained therapists.

Robotics rehabilitation promises to be a cost-effective
solution. With the support of a robotic exoskeleton, for
instance, the therapist is relieved from the duty of constantly
manipulating the patient’s limbs throughout the rehabilitation
treatment. Furthermore, on board sensors can also acquire
accurate kinematics and biophysical data and provide mean-
ingful information on current patient’s state. Their elabo-
ration can help therapists and doctors in tracking patient’s
progress. Finally, rehabilitation robots enable the possibility
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to develop telerehabilitation applications that could allow
doctors to remotely supervise patients training at home. The
obvious importance of this research domain has also been
highlighted in two recent documents drawing the future of
robotics research in Europe [2] and in the United States [3].

Rehabilitation robotics offers several challenges. Key ones
are the development of intuitive human-robot interfaces
(HRI), supporting the interaction of robotics devices with
the subject, and the robot’s ability to autonomously adapt to
current patient’s capabilities. The facing of these challenges
would benefit from the availability of a NeuroMusculoskele-
tal Model (NMM). NM modeling can potentially enhances
the interaction between the human and the rehabilitation
device as it is a powerful tool for understanding how the ner-
vous system controls muscles to generate movements. Both
the biomechanics and robotics communities have success-
fully used NM model in several applications. Biomechanists
have developed complex uniarticular joint models driven by
surface electromyography (SEMG) signals for the purpose of
studying human motor control strategies. Their complexity,
however, relegate them to offline computation [1]. Only
recently, robotics researchers have developed NM models
suitable for real-time applications [4], [5], [6], [7]. In [4],
the authors present a model of the human muscles able to
predict joint torques for the upper limb as a function of the
joint kinematics and neural activation level. Another effective
research has been presented in [5]. The EMG signals are used
as input for a simplified biomechanical model able to derive
the desired action of the operator and control an orthoses for
the knee joint. These models are however far too simple and
do not allow complex movements in the supported limbs.
The availability of accurate and comprehensive neuromus-
culoskeletal models, combining high reliability and real-
time operation, is therefore needed for the development of
effective HRI and control system for rehabilitation robotics
devices like exoskeletons.

This paper presents an EMG-driven neuromusculoskeletal
model for the knee joint. We focused on the human leg
due to the lack of research when compared with the ad-
vancements on upper extremity exoskeletons. The starting
point for this research is the complex NM model previously
developed by Lloyd et al. [1]. With the goal of reducing
time requirements for real-time applications while retaining
the required reliability, we have investigated the impact of
assuming the tendon infinitely stiff. Experimental results
demonstrate that this assumption does not affect the capacity
of the Stiff Tendon Model (STM) to predict muscle forces
and joint moments during gait. We also assessed a significant
reduction in processing time for the calibration and the
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Schematic of the EMG-driven stiff tendon model. Static poses together with anthropometric parameters and biodex data are used to scale the

AM (block A) and estimate the following terms: [mt_ ymt, lom, lg and MTU moment arms. Raw EMGs are converted in muscle activation (block B) and
are subsequently fed into the SHM (block C) together with the outputs provided by the AM. The SHM, in turn, computes musculotendon forces that are
combined with their respective musculotendon moment arms and summed up together to produce an estimate on the knee joint moment. This estimate is
used, in block D either for validating the model or to calibrate the remaining model parameters.

runtime estimation of muscle forces and joint moments.

The remaining of the paper is organized as follow. Sec. II
presents the general architecture of the STM. Sec. III de-
scribes the theoretical backgrounds behind the design of
the model assuming the tendon stiff. A section with the
details about the data acquisition procedure follows (Sec. IV)
while results supporting our research are presented in Sec. V.
Finally, Sec. VI discusses the socioeconomic impact of our
research.

II. MODEL STRUCTURE

In this section we briefly review the NM model developed
by Lloyd et al. and presented in [1], [8], [9], [10]. The EMG-
driven neuromusculoskeletal (NM) model (Fig. 1) consists
of 4 fundamental components: anatomical model (Fig. 1-
A), EMG-to-activation model (Fig. 1-B), stiff tendon Hill-
type muscle model (Fig. 1-C), and scaling, calibration and
validation of the NM model (Fig. 1-D). The NM model uses
both forward and inverse dynamics in an hybrid approach
to EMG-driven modeling. The only inputs are raw EMG
and joint kinematics. In Sec. II-C we illustrate the main
contribution of this paper, i.e. the changes we applied to
the Hill-type muscle model to decrease processing time. Part
of the Sec. II-D discusses the extension introduced in the
subject scaling model.

A. Anatomical Model

The anatomical model (AM) of the lower limb (Fig. 1-
A) is created using the SIMM Biomechanics Software
Suite (Musculographics, Inc.) based on the results presented
in [11], [8]. The AM consists of line segment representa-
tions of 13 musculotendon units (MTUs) spanning the knee
joint including: semimembranosus, semitendinosus, biceps
femoris long head, biceps femoris short head, sartorius,
tensor fascia latae, gracilis, vastus lateralis, vastus medialis,
vastus intermedius, rectus femoris, medial gastrocnemius,

and lateral gastrocnemius. Only two muscles crossing the
knee are not included: the plantaris and the popliteus. They
are assumed to have a negligible contribution to the total
flexion-extension (FE) moment due to their relatively small
physiological cross sectional area. The lengths of the mod-
eled bones and MTUs are linearly scaled to the actual sub-
ject’s size. The AM is kinematic driven by the hip, 6y, knee,
0k, and ankle, 6, joint angles including both uniarticular
and biarticular muscles to determine muscletendon lengths,
[™t, velocities, v™*, and moment arms, 7.

B. EMG-to-activation Model

Raw EMG signals from each muscle are band pass filtered
(10-150Hz) using a second order Butterworth filter and
subsequently full wave rectified and low pass filtered (6Hz)
to obtain the linear envelope. Envelopes are then normalized
against maximum values obtained from linear envelopes
computed during isometric maximal voluntary contractions
(MVC). Then, the EMG-to-activation model (Fig 1-B) ap-
plies a recursive filter to obtain an estimate of the muscle
activation (u(t)) [1]. Muscle activation is further processed
to account for the non-linear relationship between EMG and
muscle force. The model uses an exponential relationship
that includes a single parameter to control the extent of the
non-linear relationship [9]:

eAu(t) -1
alu(t) = ——

where A is the non-linear shape parameter and it is con-
strained to —5 < A; < 0, with 0 being a linear relationship.

(D

C. Stiff Tendon Hill-type Muscle Model

This section presents the main contribution of our work,
i.e. the specific changes that we introduced in the NM model
designed by Lloyd et al. [1]. The main modification consists
in replacing in the Hill-type muscle model the non-linear
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Fig. 2. (a) Recorded and estimated knee moment during an isometric trial. (b) The muscle forces predicted by the NM model are scaled to exactly reproduce
the measure moment. In this graph the semimembranosus muscle forces are displayed. (b) EMG-to-activation relationship for the semimembranosus muscle

before (c) and after (d) calibration (flexion isometric contraction).

tendon with a stiff one. The modified model will be referred
as Stiff Tendon Hill-type muscle Model (SHM).

The output from the previous two components is the input
for the SHM (Fig. 1-C) that estimates the forces generated
by each muscle. This forces are then used to determine the
resultant knee joint moment. The SHM represents each MTU
as a contractile and stretchable element (modeling the mus-
cle fiber) in series with a tendon. The contractile-stretchable
element of the muscle fiber is modeled as a combination
of general force-length and force-velocity functions (Fig. 1-
C). Two are the force-length functions used to compute the
force generated at a defined fiber length. The active force-
length function (f A(fm)) refers to the contractile element
of the fiber producing active force when contracting. The
passive force-length function (fp(I™)) represents the passive
element of the fiber producing resistive force when stretched.
Both depends on [™, the muscle fiber length normalized with
respect to the optimal fiber length [*. This parameter is the
length at which a muscle produce the maximal force. The
Sorce-velocity function (fy(v™)) expresses the influence of
the fiber contraction velocity (v™) on the muscle force.

The final muscle fiber force (F*) depends on the follow-
ing parameters: maximal isometric muscle force at optimal
fiber length (Fj*), muscle strength (9), instantaneous fiber
length (I") and velocity (v™), and, finally, instantaneous
optimal fiber length (I7*) and instantaneous pennation angle
(), both functions of muscle activation (a(u)).

The proposed NMM models the tendon as a non-
deformable infinitely stiff tendon-like body, in contrast to the
model previously developed by Lloyd et al. [1], that includes
a non-simplified Hill-type muscle model. In the following,
we will refer to this model as Lloyd Hill-type Model (LHM).
The LHM models the tendon as a passive elastic element that
acts like rubber bands. As the muscle fiber force grows, the
tendon gets stretched. When the tendon resting length (I%) is
exceeded, the tendon produces a resistive force as the strain
increases. The tendon contribution to the musculotendon
force is generally described by a non-linear function that
expresses the relationship between force and instantaneous
tendon strain. However, according to [12] the tendon is rather
stiff: the strain is only the 3.3% of the tendon length when the
muscle generates maximum isometric force. Therefore, we

decided to neglect the tendon strain in our model resulting
in MTU length and force being dependent only on the fiber
length variation. This allows to derive an analytical formula
for estimating the muscle fiber length and velocity and avoids
the time-consuming Runge-Kutta-Fehlberg (RKF) integra-
tion of the very stiff muscle-tendon differential equations
needed in the LHM [1]. Section III presents an in-depth
description of the SHM design. Section V shows how our
assumptions positively influence the prediction of muscle
forces and knee joint moment.

Once the muscle forces are computed, the net knee joint
flexion-extension moment is obtained by summing the prod-
uct of each muscle’s force by its flexion-extension moment
arm (Fig. 1-D).

D. Scaling, Calibration and Validation of the Model

To validate a model, outputs are usually compared with
data measured empirically. However, due to the methodolog-
ical difficulties in measuring individual muscle forces, any
direct validation of the NM model on humans is prevented.
An indirect validation process was therefore used to validate
the model prediction ability and also to calibrate and scale
the model to each subject. The estimated knee joint FE
moment is compared with the net FE moment experimentally
measured with an inverse dynamic model [13]. When the
model is able to accurately estimated the muscle forces, the
computed knee FE moment should be equal to the measured
one.

The aim of the calibration process is to define the values
of a set of model parameters tuned to the subject and thus
allowing the proper estimation of the FE knee moment.
Starting from a set of calibration trials, a simulated an-
nealing process alters the selected parameters to minimize
the sum of squared differences between the net knee FE
moment approximated by the model and that experimentally
measured (Fig. 1-D) [1]. The adjustable parameters used
in the calibration process are divided in two main groups.
The first group includes parameters of the EMG-to-activation
model such as the activation variables C; and C5 that are
used by the recursive filter to determine u(t) (Sec. II-B)
and the non linear shape factor A (Eq. 1). These parameters
account for changes in muscle excitation level due to EMG
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electrodes placement, skin preparation and impedance and
need to be calibrated in each testing session. The second
group includes parameters of the Hill-type muscle model:
flexor (d¢), extensor (d.) and gastrocnemius (d,) strength
coefficients. These parameters scale the relative Fj’* values
to account for individual differences in muscle strength. They
also need to be calibrated each session.

There are also additional parameters that are required to be
calibrated only once for each subject as they depends only on
the body geometry. These parameters take into account the
musculoskeletal geometry of the subject (“subject scaling”
block in Fig. 1-D). They include the tendon slack length
(1) and the optimal muscle fiber length (I7'), the length at
which the muscle produces maximal force. They both have
great influence on the force generating behavior of a MTU
and they not-linearly change with the subject dimension. The
scaling of these parameters is performed according to the
method described in [10].

Since the model presented in this paper assumes the
stiffness of the tendon, then the scaling of lg, the tendon
slack length, deserves even more attention. A technique to
refine the previously scaled [% values has been presented
by the authors in [14]. This technique preserves the non-
linear EMG-to-activation relationship expressed in Eq. 1 for
an individual muscle over several isometric trials at different
joint angles.

Muscle activation is rearranged from Eq. 3 to express its
relation with muscle fiber length as follows:

Fs — Jp(7)
fa(lm)

where the contraction velocity has been neglected since the
tasks have been performed under isometric conditions. The
tendon slack length (influencing [;n) is refined to minimize
the discrepancy among the EMG-to-activation relationships
over different trials (Fig. 2-c). The term F" in Eq. 2 is
an estimate of the individual muscle force. This estimate
has been derived using the NM model calibrated on each
isometric trial. When deriving muscle forces using the NM
model, a perfect match between the recorded net knee
moment and the estimated one cannot be achieved (Fig. 2-
a). This happens because, during the calibration process,
the tendon slack length has not been properly scaled yet
and a small number of parameters are varied. We therefore
scaled each muscle force by the term: Ty /T, with Tx the
knee reference torque and 7Tr the estimated one. This allows
to obtain force estimates that generate the actual reference
joint torque and preserve the force sharing predicted by
the NM model (Fig. 2-b). Forces were scaled so that the
corresponding activation level was always between 0 and
1. Experimental results in Fig. 2-c shows a significant dis-
crepancy between the EMG-to-activation relationships over
different angles before the scaling of the tendon slack length.
Fig. 2-d shows the same relationship after calibration. The
EMG-to-activation relationship is now preserved over all
trials.

2

Ay =

III. DESIGN OF THE SHM

This section provides additional details about the design
of the Stiff tendon Hill-type muscle Model (Fig. 3). As
shown in Sec. II-C, the SHM computes the muscle fiber
force combining together the action of the active and passive
elements of the fiber. The final force value is:

F™ = (fa(l™)-fv (0™)-a(w)+fp(I™)+d™a™)-FF-6 (3)

where the term d™ represents a passive parallel damping
element that was added to the force-velocity relationship
to account for the muscles damping characteristics as sug-
gested in [15]. Including passive damping has the benefit
of increasing the stability. Other terms of Eq. 3 have been
already defined in Sec. II-C. The final force produced by
each MTU can be derived considering the influence of the
pennation angle (¢), the angle at which the fibers are oriented
with respect to the tendon (Fig. 1-C). The component of the
muscle fiber force computed from Eq. 3 along the tendon
line of action is therefore: '™ = F™ - cos(y). To compute
F™ and therefore F™!, the SHM needs to first obtain the
instantaneous values for "™ and v™.

The method used to calculate these values is the main
difference between the SHM and LHM. The Stiff tendon
Hill-type muscle model is designed considering the tendon
infinitely stiff and not producing any resistive force to stretch.
Its length is constant and it is set to [{. This assumption
allows to easily solve the following equation for the muscle
fiber length:

i = (g sin(po))? + (mt — 1t)? (4)

where ¢ is the pennation angle at optimal fiber length.
If the tendon length [* is unknown, this equation could
not be solved. However, since we assumed [} = li, the
equation allows to obtain [ with low computation time
requirements. Furthermore, since the tendon is assumed to
be infinitely stiff, the fiber contraction velocity equals the
MTU contraction velocity. Therefore, v can be computed

muscle
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Fig. 3. Schematic of the stiff tendon Hill-type muscle model. The SHM
takes inputs from the AM model and from the EMG-to-activation model.
Since the tendon is stiff, v = v™?* and can be computed by the AM. This
cannot be done by LTH where v™ has to be computed at run time by the
Hill-type muscle model.
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by the AM by differentiating [™. This enables to speed up
the run-time execution of the SHM.

Eq. 4 cannot be solved by the LHM as both I™ and
It are unknown. In LHM, an initial guess on muscle fiber
velocities is obtained by determining the stiffness of muscle
fiber and tendon, and apportioning the total musculotendon
velocity to the muscle fiber and tendon based on their relative
stiffness. This is accomplished using the Loan Dynamic
Force Estimation Method (LDFEM) [16]. Muscle fiber length
at the following time step is then predicted by forward
integration of the fiber velocity using the RKF algorithm. The
instantaneous tendon length and strain can then be computed
and the resultant force generated on the tendon is estimated.
From this, the active and passive component of the muscle
fiber force are derived and a new estimate of fiber velocity
is obtained by interpolating the force velocity curve. The
process can now be iterated for all time steps.

The LHM requires a longer computation time for the
estimation of ! and v" when compared to the SHM as it
requires the execution of the LDFEM to get the integration
process started. Additionally, at each integration step, the
time-consuming RKF algorithm has to be executed. The
SHM, instead, only needs to solve Eq. 4 to derive "™ while
v™ is computed by the AM. Section V shows a comparison
of the performance of the two models.

IV. EXPERIMENTAL PROCEDURES

Experiments were performed at the Gait Laboratory of
the School of Sport Science Exercise and Health of the
University of Western Australia. Tests involved capturing
anatomical static poses of a 44 years old healthy male subject
using a 7 camera motion capture system (Vicon, Oxford, UK)
and then modeled to estimate individual bone lengths. This
data was then used to scale the anatomical model (Sec. II-
A). Optimal fiber length and tendon slack length of all
MTUs were also scaled to fit subject’s geometry (Sec. II-D).
EMG signals were collected from the selected muscles using
double-differential surface electrodes. A telemetered system
(Noraxon, Scottsdale, USA) was used to transfer the EMG
signals to a 16 channel amplifier (Delsys, Boston, USA)
with sampling frequency at 2kHz. EMG were collected
during two types of trials: dynamometer and gait trials.
Dynamometer trials were performed using a dynamometer
(Biodex, New York, USA) under isometric conditions. The
knee was secured at different angles to span the whole
operating range of the uniarticular muscles. Furthermore,
hip and ankle joint angle positions were also varied during
additional knee FE isometric trials to account for the action
of biarticular muscles. Gait trials included the acquisition of
ground reaction forces and joints kinematics, as well. All
motion data was filtered using a quintic spline function with
a mean square error value of 20. Ground reaction forces data
was filtered using a two-way low pass Butterworth filter with
a cutoff frequency of 61 z. Refer to Sec. II-B for the EMG
signal processing phase. Different sets of data were then
created. The first was used to further calibrate the stiff tendon
NM model (Sec. II-D) and it included the dynamometer trials
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Fig. 4. (a) Model’s ability to predict FE knee moment during gait trial
number 5. Positive joint moments correspond to knee flexion. The cross-
correlation between estimated and measured moment was 0.876 in this
particular trial with a RMSE of 8.563 N'm. Parameters of the model were
adjusted using data from different trials, and then the model was used
predict the moments in this gait trial. This demonstrates the model’s ability
to predict moments from a novel task using only EMG and kinematic
information despite the tendon was assumed infinitely stiff. (b) The force
contribution of 13 MTUs to the total joint moment.

and some gait trials, as well. The second data set comprised
gait trials used for model validation purposes only (Sec. V).

V. EXPERIMENTAL RESULTS

After calibration, the stiff tendon NM model was used
to predict knee moments during 10 novel gait trials with
a duration of 1.2 £ 0.06s. Despite assuming the tendon
infinitely stiff, the prediction ability of the model was not
affected. Over all trials, the level of cross-correlation (R)
between the estimated knee moment and the experimentally
measured one was 0.892 + 0.047 (with 1 meaning maximal
correlation). This indicates that over all trials, our model
estimates moments with proper accuracy when compared to
the measured ones. The root mean squared error (RMSE)
over all trials was 8.1 & 1.02Nm. In the considered gait
trials, experimentally measured moments values ranged from
a minimum of —33.40+3.99Nm to a maximum of 46.50 £
10 N'm. Therefore, the average error introduced by our model
was about a 10% of the range of variation observed on the
knee FE moment. A significant improvement in computation
time was also achieved. The stiff tendon model took 0.0639+
0.0015s to estimates the joint moments while the complete
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TABLE I
STATISTICAL COEFFICIENTS AND PERFORMANCE DATA FOR THE 10 GAIT TRIALS.

Trial Number 1 2 3 4 5 6 7 8 9 10
R 0.804 0.924 0.862 0.927 0.876 0.927 0.896 0.835 0.943 0.926
RMSE (Nm) 7.723 9.873 8.678 7.414 8.563 7.537 8.542 9.377 6.392 7.702
SHM Execution Time (s) 0.0630 0.0644 || 0.0632 0.0620 || 0.0631 0.0646 0.0673 0.0647 0.0639 0.0631
LHM Execution Time (s) 0.670 0.688 0.692 0.695 0.697 0.711 0.682 0.672 0.692 0.715
SHM Calibratio Time (s) 64.842 63.152 63.343 61.553 62.761 63.941 64.833 62.455 63.442 63.343
LHM Calibration Time (h, min) 3,48 3,37 3,10 2,12 2, 45 2,57 3,12 3,22 2,37 3,43

model took 0.691s +0.0146s. Calibration was completed in
63.432 + 1.195s by the simplified model. It took more than
3h on the complete one. Therefore the calibration algorithm
and runtime is much faster than the previous version enabling
its use in real time applications. Performance tests were
executed on a PC with a Pentium 4 processor (3.20GH z)
and 2GB RAM memory. Table I provides additional details
on performance results. The estimation of the muscle forces
and fiber lengths is an intermediate step in the model that
leads to the computation of the knee joint moment. Fig. 4-a
shows the ability of our model to predict FE knee moment.
Fig. 4-b shows the estimation of muscle forces that allowed
the computation of the joint moments.

VI. IMPACT INVESTIGATION

This section introduces the impacts of our research. First,
it illustrates the possible enhancements on the control of
exoskeleton devices. Then, it analyzes the possible social
benefits for the health care system and market.

A. Enhancements on Exoskeleton Control

Despite the recent progresses in the design and imple-
mentation of robotic exoskeletons and powered orthoses,
many design challenges are still open. Limitations of current
exoskeletons can be overcome by the use of NM models.
Indeed, a better understanding of muscle and tendon behavior
can improve actuation and control algorithms, resulting in
an enhanced biomimetic limb dynamic [6]. Our stiff tendon
NM model can already capture the major features of human
walking and may improve understanding of musculoskeletal
morphology and neural control. This capabilities help in
the design of economical, stable and low-mass exoskeletons
for human walking augmentation. Another limit of today
exoskeletons and orthoses is the lack of an efficient informa-
tion exchange between the human wearer’s nervous system
and the wearable device [6]. Our EMG-driven NM model
provides an effective human-machine interface that can be
used to asses the human motor intent. Furthermore, our
model is non-invasive, and it does not require the placement
of sensors inside muscle to measure the musculotendon unit
force. The use of surface sensors significantly improves the
users’ comfort and widens the range of potential users.

B. Impacts on Impaired Persons

Our model makes possible several enhancements on the
current state-of-the-art exoskeletons, allowing impaired peo-
ple to benefit of new devices, easier to control and with

a simplified training session. This positively affects the
participation of impaired persons to everyday life, improving
their mobility and, as a consequence, their social interaction
opportunities. Furthermore, NM models allow doctors to
study patients’ muscle behavior without the requirement
of invasive techniques. This speeds up the design of a
rehabilitative therapy, which is often also more appropriate
for the patient boosting his’her motor re-learning process.
Decreasing the cost of the therapy and increasing its ap-
plicability and effectiveness has a large impact on impaired
people as demonstrated by the data presented in the following
part of this section. Impaired people can be classified in two
groups. The first includes elderly individuals affected by a
loss of mobility due to aging. The second includes people
that are affected by motor disability due to neural or physical
pathology.

1) Elderly Individuals: Our society is growing older as
a direct consequence of the advances gained in the field
of health science and personal health care. In Japan, for
instance, the predominant age class in year 2000 was the
30 to 40 years old one while by 2050 will likely be the
70 to 80 years old one. The same data can be provided for
all advanced industrial societies as United States, Canada,
Australia and Europe. In Italy, the National Italian Institute
of Statistics (ISTAT) is reporting a current population of
persons over 75 years of age that is estimated to be comprised
of 5.350.000 individuals (9% of the population). This is
expected to rise to over 11 millions (19%) in 2050. There
is a high relation between the aging of the population
and the number of physical disabilities. As an example, in
Italy the percentage of disable people is around 5% of the
population, that increases to 38% when considering only over
75 years old individuals [17]. According to current statistical
projections, it is estimated that the percentage of people with
some kind of disability in Europe will rise from current 11%
to 18% in 2020, mainly as a result of population aging [2].

2) Disabled Individuals: Disabilities due to neural or
physical pathologies annually affect the lives of several
millions of people worldwide. The most prevalent causes of
disabilities are related to musculoskeletal system disorders,
sensory impairments (visual and hearing), and pathologies of
the nervous system (strokes, spinal cord injuries, and brain
tumours). Disabilities due to stroke, for instance, annually af-
fect 15 million people worldwide. Of these, 5 millions are left
permanently paralyzed placing a burden on community [2].
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C. Impact on the Health Care System

Data reported in the previous sections, clearly point out
the high need for efficient solutions to assist elderly and
disabled people. The number of persons requiring physical
support is expected to increase in the next future. As a
consequence, the health care system will need to handle
a greater number of subjects bounded to spend significant
amount of time in hospitals. The larger involvement of doc-
tors and caregivers will increase, as well as the cost related
to personal health care and rehabilitation [2]. Currently, labor
costs for rehabilitation is roughly 60% to 70% of the U.S.
expenses in the medical sector ($30 billion per year). If new
technology could decrease, just by 5%, the labor costs on
only 10% of the most disabled population, the savings would
be $300 millions. A similar scenario is observable in Europe
where the healthcare charges are already the 9% of the Gross
Domestic Product (GDP), on average, and it is rising faster
than economic growth itself, i.e. 4% a year reaching the
16% of the GDP by 2020 [2]. Providing the hospitals with
intelligent robotics systems such as exoskeletons capable
of taking care of the patients in an autonomous (or semi
autonomous) way, will significantly decrease the number
of therapists needed for a single subject and will shorten
the length of stays in hospitals lowering the costs related
to personal health services. Furthermore, the development
of sophisticated software tool such ad NM models will
help doctor to better diagnose rehabilitative treatments and
decrease their cost.

D. Impact on the Personal Health Market

The development of personal health care solutions based
on information and communication technology (e-Health)
is a growing market. The global market for eHealth was
estimated to be worth € 17.4 billion in 2008, increasing to
over €20.9 billion by 2012, an average annual growth rate
of 4.7% [2]. An increasing number of countries worldwide
have already explicit eHealth policy strategies. The industry
also shows an increasing interest in this field as demonstrated
by exoskeletal research programs of large automobile com-
panies, such as Honda and Toyota [6].

VII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a NM model that can enhance
the control of current state-of-the-art exoskeleton devices.
This has large implications on the health care economic and
social systems as the increasing number of impaired people
can benefit of an enhanced interface with the devices, easier
to train and control. The proposed NM model is based on the
knee joint model previously developed by Lloyd et al. [1],
[81, [9]. In the paper we presented a set of modifications and
extensions introduced to allow the use of the model in real-
time applications while preserving its prediction ability. We
specifically investigated the effects of assuming the tendon
infinitely stiff. Results suggested that our assumptions did not
compromise the model prediction ability during gait tasks.
Future work will further test the model on a broader range of
movements and on more subjects. A significant improvement

in terms of computation time was also achieved enabling the
use of the stiff tendon model in real-time applications. We
also introduced a rapid method for scaling tendon lengths
to the subject’s actual dimensions. This method relies on
preserving the strong relationship existing between excitation
and muscle activation. The suggested approach does not
make any a priori assumption on muscles behavior in sharing
load. This is an improvement with respect to traditional
approaches. Current methods solve the force sharing problem
by solving a non-linear optimization problem where the cost
function assumes a certain behavior of the muscles [18]. The
proposed scaling procedure will be further validated with
ultrasound technology in future research.
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