
  

   

Abstract—Shape memory alloy (SMA) actuators are compact 

and have high force-to-weight ratios, making them strong 

candidates to actuate robots, exoskeletons, and prosthetics. To 

optimize speed and energy consumption, SMA actuators have 

been embedded in an NxN vascular network that can deliver 

electric and thermofluidic energy to the each actuator. The 

scalable architecture of the vascular network allows for 2N 

control devices (valves, transistors) to be shared amongst N
2 

actuators, so that as the number of actuators increases, the 

number of required control devices scales at a smaller rate. 

This Network Array Architecture (NAA) allows for each 

actuator to be controlled individually or in discrete subarrays. 

However, not all combinations of actuators can be activated 

simultaneously; therefore in general, a sequence of control 

commands will be need to be executed in order to achieve the 

desired actuation. 

By treating each actuator as having a binary state, the 

combined states of the actuator array can be represented by 

graph theory, where states are nodes and the transitions 

between states are graph edges. By properly weighting the costs 

of the transitions, graph search techniques can be used to find 

optimal sets of control commands for desired state changes. 

This paper formulates the control of NAA actuators systems as 

a graph theory problem, and characterizes the ability of search 

algorithms to optimize a weighted combination of speed and 

energy usage, while minimizing computational cost.  

I. INTRODUCTION 

A primary challenge to maximize the wearability of 

robotics, prosthetics and exoskeletons is the need to actuate 

many degrees of freedom (DOF) with minimal bulk. 

Wearability is enhanced when robotic actuation closely 

matches the characteristics of human actuation according to 

metrics such as strength, speed, range of motion, power 

density, and degrees-of-freedom. Wearability additionally 

implies implementation with a long-lasting untethered 

energy source. 

As a prime example, consider the human hand, which has 

21 degrees-of-freedom in the fingers and thumb alone. It is 

extremely difficult to design a robotic/prosthetic hand to 

mimic this range of motion of a human hand. A greater 

engineering challenge is to actuate it with similar power 

density of skeletal muscles (50 to 100 W/kg [1]). Although 
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DC motors can produce wide range motion, their typical 

power density is approximately 10 W/kg. Therefore, in order 

for a prosthetic arm to match the capabilities of the 

biological counterpart, it would have to be 5 to 10 times the 

volume and weight of the human arm. Pneumatic and 

hydraulic actuators can match or exceed the power density 

of human muscles, but they involve the hazards of high 

operating pressures and require a tethered source of 

pressurized fluid or a heavy/noisy compressor. Piezoelectric 

actuators have power density comparable to human muscle, 

but require potentially hazardous operating voltages and 

create only microscale displacements, which would be 

impractical to leverage into useful motion for a prosthetic or 

exoskeleton. 

One solution to advancing wearable robotics is to 

implement large networks of high power-density “muscle-

like” actuators such as Shape Memory Alloys (SMA) and 

ElectroActive Polymers (EAPs) [2]. Unlike electromagnetic 

or hydraulic actuators, the principal dynamics of SMAs are 

thermomechanical. SMA actuators have high power density 

and are able to store thermal energy, allowing them to 

maintain a force without further energy input. Their 

dynamics are highly nonlinear and therefore difficult to 

control with classical control methods [3-11]. By neglecting 

the nonlinear elements of their dynamics and treating them 

as binary actuators (fully contracted/extended), and 

networking large numbers of these actuators mechanically in 

series or parallel, a more realistic means of control can be 

achieved [12-15]. This method of control requires novel 

ideas for energy delivery and removal. 

Inspired by the human body, a “vascular network” has 

been created for delivering/removing energy to/from arrays 

of SMA “muscles” by thermofluidic methods [16]. Unlike 

hydraulic or pneumatic systems, these networks operate at 

relatively low pressures, similar to biological vascular 

systems. In order to characterize the performance and 

evaluate the full potential of these Wet Actuators, complex 

dynamic models of the SMA response to thermofluidic and 

electrical inputs are needed, as well as multi-input intelligent 

control algorithms tailored to on-off control of the nonlinear 

dynamics. Furthermore, when arrays of actuators are 

networked together, the fluidic impedances of the vascular 

networks interact in such a way that unique dynamic 

behaviors emerge from the overall network that would not 

result from a purely electrical network of similar 

architecture. Thus, in addition to intelligent network control 

algorithms, dynamic modeling is critical for characterization 

of the wet actuator networks, as well as the individual 
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actuators themselves. Ultimately, these methods of 

characterization could be adapted to fuel-powered SMA [17] 

and wet EAP muscles, replacing thermodynamics with 

chemical dynamics.  

As a target application to demonstrate the impact of this 

research, we would specifically like to enable prosthetic 

hands/exoskeletons that could replicate/manipulate the 

actuated degrees-of-freedom similar to that of a human hand. 

The “muscles” themselves would fit in a human-sized 

prosthetic forearm or contained in a low-profile sleeve worn 

over a human forearm. 

The goal of this paper is to present optimal control 

algorithms for controlling arrays of wet actuators by 

applying graph theory. In Section II, we first review the 

characteristics of SMA actuators and prior work in 

networking arrays of wet SMA actuators and controlling 

them with electric and thermofluidic inputs. In Section III, 

we show how graph theory can be used to formulate the 

multi-input control problem for an array of networked wet 

SMA actuators. We present how graph theory algorithms 

can be used to search for sequences of control commands 

that optimize actuation time and energy usage. Finally, in 

Section IV, the performance of the graph theory algorithms 

will be examined through simulation. 

II. BACKGROUND 

A. Shape Memory Alloy (SMA) Actuator 

SMAs are a class of smart materials that are able to return 

to a predefined shape after being strained up to 

approximately 4%. This deformation and recovery of strain 

is achieved by a thermomechanical process where the SMA 

is strained while it is cold (<~70C) and then restored when it 

is heated about its transformation temperature of ~70C. 

These characteristics allow SMA to be implemented as 

compact, high force-to-weight ratio actuators. Because the 

thermomechanical process is nonlinear and difficult to 

model and control, this research will treated the actuators as 

binary (fully contracted (1) or extended (0)) and the control 

strategy will only be concerned with delivering/removing 

energy in order to transition between these two states. In 

order to achieve higher resolution displacements/forces, the 

actuators will be bundled together and operated in 

series/parallel respectively. Figure 1 shows a robotic hand 

that is actuated by wet SMA actuators in series to produce 

discrete displacements of the fingers. Electric and 

thermofluidic inputs to the actuators are controlled by a 

network of transistors and valves. The intelligent control 

algorithms presented in this paper will be applied to this 

hardware in future work. 

B. Wet SMA Actuators 

SMA wire can be heated electrically very quickly 

(milliseconds); however the cooling of the SMA wire can 

take multiple orders of magnitude longer if unforced air 

convection is used. To improve the cooling process, forced 

convection and water baths have been used, but these add 

significant amount of size and mass to the actuator. To 

maintain a high force-to-weight ratio for the actuators, wet 

SMA actuators [13] were developed, in which an SMA wire 

is embedded in a compliant vessel. The compliant vessel 

allows a small amount of cold fluid to flow over the wire to 

improve the convection cooling and it also allows for 

convective heating using hot fluid. 

 

 
Figure 1.Robotic hand actuated by wet SMA actuators 

connected in series. 

C. Network Array Architecture 

The wet SMA actuator assembly does resolve the issue of 

cooling rate; however the control devices (valves, 

transistors) can be many times heavier than the SMA 

actuator itself. Configuring the actuators in a Network Array 

Architecture (NAA) [18] allows for an NxN array of 

actuators to be controlled by 2N control devices, reducing 

the total weight of the system. Figure 2 shows a schematic of 

the electrical network. The actuators in a common row are 

connected to a constant voltage source and on the sink side 

(ground) and the actuators in a common column are 

connected to the sink (ground). In order to send energy to 

the actuator, the row and column switch must be closed to 

complete the circuit. The diodes in the circuit ensure that the 

current cannot take an undesired route to ground. Each 

actuator can be activated individually, or multiple actuators 

can be activated simultaneously by activating multiple rows 

and/or columns. However actuators on the diagonal (e.g. A1 

 
Figure 2. Network Array Architecture 
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& B2) cannot be activated simultaneously without 

permitting energy to flow into adjoining actuators as well 

(e.g. A2 & B1). 

The fluidic network is controlled in a similar manner to 

the electrical network. However, due to the compliance 

(capacitance) of the fluidic vessel, the fluidic domain must 

be constructed using a collocated NAA [19]. This 

architecture eliminates parasitic responses observed in a 

fluidic system using the standard NAA. 

D. Control Logic for NAA 

The control logic for NAA is described in detail in [20]. 

Each control device of NAA is treated as a binary device 

which is either connected (1) or disconnected (0). The N 

control devices on the source and the sink side of the array 

can be in any of 2
N
 states (e.g. 1000, 0100, 1100, ...). When 

the set of control devices are all disconnected (0000), there 

is no flow (electric/fluidic) through the system, which will 

not produce any change in the system. This leaves 2
N
-1 

configurations each for the sink and source side of the array. 

In order for energy to flow from the source through the 

actuator(s), at least one source side control device and one 

sink side device must be connected (closed). Since the two 

sets of control devices are orthogonal to one another, there 

are (2
N
-1)

2
 configurations of the control devices that will 

connect a subarray (e.g. 1x1, 1x2, 2x2, …, NxN) of actuators 

from the source to sink. Figure 3 shows a few examples of 

control configuration for both fluidic and electric NAA. 
 

 
Figure 3. Control commands examples. 
 

Because of the architecture of NAA, not all the actuators can 

be controlled simultaneously and it may take a sequence of 

control commands to produce the desired actuation. The 

fluidic network allows either hot or cold fluid to be delivered 

to the actuator array at any point in time. The fluid and 

electrical networks are independent and can operate 

simultaneously, but a complete algorithm that takes full 

advantage of this ability has not been developed and this 

task with be discussed in the future work section. 

E. Optimization of the Wet SMA Actuator Array 

Previous work [21-22] has characterized the performance of 

wet SMA actuators using both fluid and electricity to deliver 

thermal energy to produce actuation. Figure 4 shows the 

characteristics (speed, efficiency) of a single wet SMA 

actuator with different rates of energy input. These results 

show that the electrical network is up to 2.5 times more 

efficient than and twice as fast as the fluidic network. 

However, the energy source to heat the fluid (e.g. propane) 

can have up to 100 times the energy density than that of an 

electric battery. Therefore although fluidic heating is not as 

fast or efficient, more total actuations can completed per unit 

mass of energy storage. For arrays of actuators, identifying 

the optimal set of control commands to yield a desired state 

will be achieved through graph theory discussed in the 

following section. 

III. INTELLIGENT CONTROL OF NAA USING GRAPH THEORY  

A. Graph Theory Structure of NAA 

In the previous sections, the SMA actuators and NAA 

have been defined by discrete states and control commands. 

Graph theory can be applied to the discrete components of 

NAA. NAA arranges the binary actuators (contracted (1) and 

extended (0)) in an NxN array that can be in one of 2
N*N 

states. These states will be treated as nodes in the graph. The 

NAA also defines (2
N
-1)

2
 discrete control command 

configurations that can address various combinations 

(subarrays) of actuators. These control commands are 

potential edges between nodes. Each of these control 

commands can be applied to any node of the graph; however 

some control commands will not produce any actuation. 

Commands that produce actuation will be defined as edges 

in the graph. Because there are three input modes (hot fluid, 

cold fluid, or electricity) for each control command 

configuration, there can be multiple edges between two 

specific nodes, where such a graph is defined as a 

multigraph. Therefore, the total number of possible control 

commands expands to 3 (2n-1) 2 from each nodes.  

B. Constructing the graph 

The 2
N*N

 nodes and 3(2
N
-1)

2 
control commands can be 

represented by N
2
 bit numbers. Valid edges of the graph can 

be easily identified by applying bitwise operations between 

the nodes and control commands. A complete graph for the 

NAA can be constructed with the following algorithm: 

1) Hot fluid or electrical heating control commands 

test = bitor (node, control command) 

if test ~= node then control command = edge 

2) Cold fluid control command 

test = bitor (~node, control command) 

if test ~= (~node) then control command = edge  

Figure 4 Speed vs. Efficiency of a single wet SMA 

actuator activated by electricity or hot fluid. 
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This algorithm identifies all the edges that cause at least 1 

actuator to change states. If the control command forming 

the edge delivers energy to an actuator of a subarray and 

there is no resulting actuation (e.g. hot fluid is delivered to a 

subarray of actuators, one of which is already hot & 

contracted), then this energy flow is termed superfluous. As 

long as at least one actuation occurs, the edge is still valid, 

but not as energy efficient as one resulting in full actuation 

(e.g. 4 out of 4). Figure 5 shows four examples of 

determining if a control command is an edge. The control 

commands for examples A & C actuate all the actuators that 

are addressed by the control command. Examples B & D 

have superfluous flow. B is an edge because it produces a 

single actuation, while D does not produce any actuation, 

and would not be included in the graph. There are redundant 

edges that can also be removed. These edges produce the 

same actuation as a smaller control subarray and are 

therefore redundant. For example, a 4x1 control command 

that heats 3 actuators can be removed from the graph 

because a 3x1 control command/edge will produce the same 

actuation. 

 

 
Figure 5 Examples of identifying edges in a NAA graph 

 

An edge with superfluous flow has lower energy-

efficiency, but it may produce the desired actuation at a 

faster rate. Figure 6 shows a small portion of the 2x2 graph 

(not all nodes and edges are shown).  Path ABC has no 

superfluous flow and a cost of [2.8τ, 3ε], where τ is a time 

unit and ε is an energy unit. Path AC has an accumulated 

time and energy cost of [2.3τ, 4ε]; where the desired 

actuation is completed faster with superfluous flow at the 

penalty of being less efficient. To express a preference for 

energy or time, a weighted time-energy cost (Cte) function 

with a performance weighting factor (wet) has been defined 

as: 

 ��� � ��� ∗ ��	
 � �1 � ���� ∗ ��
��� (1)  

When wet = 1, the total actuation time is minimized and 

when wet = 0, the total actuation energy is minimized. 

C. Graph Theory Algorithms 

Now that NAA has been formulated as a graph, we will 

examine three of the basic graph search algorithms: Best 

First Search (BFS), Dijkstra’s, and A* [23]. The multigraph 

representation of the actuator array has some interesting 

characteristics, such as high connectivity between nodes, 

large state spaces, and redundant paths between start and 

goal nodes. 

 

Best First Search (BFS): is a greedy search technique 

which follows an estimated cost-to-goal heuristic. While the 

path is not optimal, BFS tends to have a low computational 

cost. The heuristic value for this binary SMA actuator array 

is equal to the number of actuators (bits) that need to be 

flipped from the intermediate node to destination node. 

Dijkstra’s: is a search technique that identifies a path 

with minimum path cost. However, Dijkstra’s tends to be 

computationally costly, because it explores the graph with an 

uninformed perspective of the destination. The cost to 

traverse an edge in our graph is Cw. 

A*: is a search algorithm that identifies a minimum cost 

path like Dijkstra’s but it includes an estimated cost-to-goal 

heuristic like BFS to take a directed approach of exploring 

the graph. This results in lower computational cost than 

Dijkstra’s and a more optimal path than BFS.  

IV. SIMULATIONS AND ANALYSIS 

A. Graph Scalablity  

For a given array size N, an NAA graph can be built and 

implemented in MATLAB using the algorithm in section 

III.B. Table 1 shows the dimensions of each NAA Graph 

and the number of bytes it takes to represent the adjacent 

nodes of that graph. The table shows that the preprocessed 

 

 
Figure 6 Partial graph of a 2x2 array with desirable 

superfluous flow. 

Table 1 Dimensions of Preprocessed NAA graph 
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2
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graph does not scale well, but the number of control 

commands does scale well. Therefore, in future work the 

graph will be constructed as an expanding wave front 

problem.  

B.  Analysis of Search Algorithms / Computational Cost  

Of the three search algorithms, A* can both identify an 

optimal path and complete the search quickly. The challenge 

in using A* is correctly identifying the heuristic cost-to-goal, 

which is used to estimate the remaining cost to get from an 

intermediate node to the destination node as the search 

progresses through the graph. Our current metric for the 

heuristic cost-to-goal (h) is to calculate the number of 

actuators (bits) that need to change state (flip between 0 and 

1) from an intermediate node to the destination node (goal). 

To ensure that h is weighted appropriately compared to Cw, 

we define the estimated total cost-to-goal, Ctotal, evaluated at 

any intermediate node:  

 ������ � �� ∗ ℎ � �1 � ��� ∗ ∑���  (2) 

 where wh is the heuristic weighting and ∑Cte is the 

summation of Cte from the origin node to the intermediate 

node. The A* algorithm uses Ctotal to perform a directed 

search through the graph. Figure 7 shows the characteristics 

of the A* algorithm on a 4x4 array with wh ranging from 0 

(equivalent to Dijkstra’s) to 1 (equivalent to BFS). For the 

first example, the wte has been set to zero to minimize 

energy. Figure 7A shows the mean number of edges the 

algorithm explored (computational cost of the algorithm) 

and 7B shows the mean energy cost for 100 randomly 

generated simulation sets (origin, destination). BFS quickly 

finds a path between the origin and the destination, but the 

path is always not at a minimum energy. The Dijkstra’s 

algorithm identifies a path with minimum Cte, but on average 

explores multiple orders more edges than BFS. An optimal 

value of  wh is estimated to be 0.55 in order to find a path 

with minimum cost Cte, without unnecessary computation. 

On average, the algorithm only explores 9000 edges for this 

size graph. The optimal value of wh may vary depending on 

the performance characteristics of the wet SMA actuator and 

the NAA array. In Figure 7B, there is superfluous energy 

being sent to the array when wh is greater than 0.6. Although 

the array is less efficient in these cases, the total actuation 

time (Figure 7C) decreases and results in faster actuation 

rates similar to the case in Figure 6. 

C. Analysis of the Time-Energy Weighting 

 Now using the optimal wh = 0.55 in the A* algorithm, the 

performance of the array can be quickly evaluated by 

varying the wte (averaging 25 ms per origin and destination 

set using MATLAB). In Figure 8A and 8B, we see that the 

performance of the array transitions from slow and more 

energy-efficient to fast and less energy-efficient. Figure 8C 

plots the breakdown of energy costs associated with 

different inputs to the array. As wte is increased, electricity 

and superfluous flow are increasingly utilized, resulting in 

greater speed at the expense of more energy usage. The 

Figure 7. Mean # of edges explored, mean energy (εεεε) and 

mean total actuation time with varying Heuristic 

Weighting (wh) for A* search algorithm for 4x4 array 

Figure 8 Performance Characteristics of Actuator Array 

with vary Cost Function (wte). 
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system transitions between energy-efficiency and speed 

when wte is approximately 0.5. The optimal value of wte will 

vary based on dimensions and characteristics of the actuators 

and the vascular network. 

V. CONCLUSION 

This paper has formulated the optimal control of a 

networked array of multi-input SMA actuators as a graph 

theory problem, and has shown that it is a viable method to 

determine an optimal set of control commands to transition 

the actuator array from one node to another node. As 

expected, the A* algorithm found the path of least cost based 

on performance characteristics while only exploring a small 

percentage (0.3%) of the graphs. Although A* was able to 

find a minimum cost path by only exploring a small 

percentage of the graph, this graph becomes too large to be 

preprocessed and stored for actuator arrays larger than 4x4.  

Future work will need to examine the control of larger 

arrays and must work without a preprocessed graph. Because 

of the scalability of the control commands, an expanding 

wave solution is a possibility for implementing the A* 

algorithm. For example in a 4x4 array, starting from the 

origin node, the graph would explore the 675 control 

commands and identify a maximum of 225 new nodes. This 

is because NAA results in a multigraph and some edges are 

redundant while others do not produce any actuation. The 

search algorithm would then identify one node with the 

minimum cost and expand up to 225 additional nodes to the 

wave front. This will continue until the search algorithm 

finds a path to the destination node with minimum cost. 

From the time it takes to construct the preprocessed graph 

and the average number of edges explored, our current 

estimate of the search algorithm is 50 ms for a 4x4 array. 

In this work, the A* algorithm can select a path using 

either fluid or electricity (fluid followed by electricity 

sequentially or vice versa). However, since the electric and 

fluidic and control hardware are independent of one another, 

future algorithms will allow both electricity and fluid to be 

delivered simultaneously to different subarrays, reducing the 

total  time from origin to destination.   

Finally algorithms will need to be developed to identify 

control command sequences for arrays where rows of 

actuators are mechanically connected in series. The 

challenge with this task is that there are multiple array 

configurations (nodes) that result in the same total row 

displacements. 
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