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Neuro-Fuzzy Control of a Robotic Exoskeleton
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Abstract—We have been developing robotic exoskeletons to as-
sist motion of physically weak persons such as elderly, disabled,
and injured persons. The robotic exoskeleton is controlled basically
based on the electromyogram (EMG) signals, since the EMG sig-
nals of human muscles are important signals to understand how
the user intends to move. Even though the EMG signals contain
very important information, however, it is not very easy to predict
the user’s upper-limb motion (elbow and shoulder motion) based
on the EMG signals in real-time because of the difficulty in using
the EMG signals as the controller input signals. In this paper, we
propose a robotic exoskeleton for human upper-limb motion assist,
a hierarchical neuro-fuzzy controller for the robotic exoskeleton,
and its adaptation method.

Index Terms—Biomedical signal analysis, electromyography, ex-
oskeleton, power amplifiers, robots.

I. INTRODUCTION

DUE TO A decrease in birthrate and progress of aging so-
ciety, role of robotics technology becomes important in

the field of medicine and welfare. We have been developing
robotic exoskeletons [1]–[3] to assist motion of physically weak
persons such as elderly, disabled, and injured persons. These
kinds of robotic systems can be used for power assist of physi-
cally weak persons in daily activity and rehabilitation. It is im-
portant for the robotic exoskeleton, especially that for medical
or welfare use, to move according to the user’s intention. The
skin surface electromyogram (EMG) is one of the most impor-
tant biological signals in which the human motion intention is
directly reflected. Consequently, it is often used as a control
command signal for a robot system [4]–[6]. In this paper, a
robotic exoskeleton for human upper-limb motion assist, which
is controlled with the EMG signals, and its control system is
proposed.

Human body is a typical complex fuzzy system. Therefore,
the biological signals such as skin surface EMG signal contains
a lot of fuzziness. It is very difficult to obtain the same EMG
signals for the same motion even with the same person. Fur-
thermore, each muscle activity for a certain motion is highly
nonlinear, because the responsibility of each muscle for the mo-
tion varies in accordance with joint angles [7], [8]. One muscle
is not only concerned with one motion but also another kinds
of motion. Moreover, activity level of each muscle and the way
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of using each muscle for a certain motion is different between
persons. Physiological condition of the user also affects the ac-
tivity level of muscles [9]. In addition to these problems, the
activity level of some muscles such as biarticular muscle is af-
fected by the motion of the other joint, because the load acting
on the other joint affects the activity level of them. The relation-
ship between the load acting on the other joint and the change
in biarticular muscle activity level is different between persons.
Furthermore, the activity level of muscles is affected by the ex-
ternal load acting on the arm. Therefore, flexible and adaptive
nonlinear control must be applied to control the robot with the
skin surface EMG signals. Moreover, real-time control ability is
required to the controller for a power assist robot since motion
delay gives a lot of stress to the user.

In this paper, we propose the effective hierarchical neuro-
fuzzy controller for the robotic exoskeleton and its adaptation
method. It is known that the hierarchical fuzzy controller is more
effective than the conventional fuzzy controller [10]–[12]. The
proposed hierarchical controller consists of three stages (first
stage: input signal selection stage, second stage: posture region
selection stage, and third stage: neuro-fuzzy control stage). The
control is carried out based on the EMG signals when the robot
user is activating his/her muscles. However, when the muscle ac-
tivity level of the robot user is not so high (i.e., when the robot
user is not activating his/her muscles), the control is carried out
based on the wrist force sensor signals in the proposed control
method. By applying sensor fusion with the skin surface EMG
signals and the generated wrist force, error motion caused by
little EMG levels and the external force affecting to human arm
can be avoided. This process is performed in the first stage of
the controller.

Since anatomy and the way of muscle use of each person
are basically similar, design of basic initial fuzzy control rules
for each shoulder and elbow posture region of the robotic
exoskeleton is not too difficult. However, since activity level
of each muscle and the way of using each muscle for a
certain motion is different between persons, the controller
must be adjusted based on physical and physiological condition
of each robot user. Therefore, the required structure of the
neuro-fuzzy (control rules) is sometimes different between
persons. If the patterns of EMG signals for certain motion are
completely unknown, control rules extraction is not required,
and preparation time is not limited, a well structured adaptive
neuro controller [13] or neuro-fuzzy controller [14] might be
one of the most suitable controllers for the control of robotic
exoskeleton with EMG signasl. However, the patterns of EMG
signals for certain motion can be basically known by performing
experiment and using anatomical knowledge. Furthermore, we
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are not allowed to take a lot of time for controller preparation for
each robot user. Therefore, we propose a flexible neuro-fuzzy
controller, which is used in the stage three of the proposed
hierarchical controller, for a robotic exoskeleton for any user.
The structure of the proposed neuro-fuzzy controller is basically
the same as the conventional simplified fuzzy controller. So
that the weight of the consequent part of the most control
rules is singleton. However, the weight of the consequent part
of some control rules is described by equation in order to take
into account the subeffect caused by another muscles. In this
point, the controller is similar to the Takagi–Sugeno–Kang
(TSK) model [15]–[19]. Unlike the traditional TSK model
where all the input variables are used in the equation of the
consequent part, only the related EMG signals are used in
the proposed method. Thus, the main effect of each muscle
is taken into account in the antecedent part of the controller
and the subeffect of some muscles is taken into account in
the consequent part of the controller. If there is no subeffect
from the other muscles, the neuro-fuzzy controller is the same
as the simplified neuro-fuzzy controller.

This paper is organized as follows. The architecture of the
proposed robotic exoskeleton system is explained in Section II.
In Section III, features of the EMG signals are described. The
hierarchical control method is presented in Section IV. In Sec-
tion V, the effectiveness of the robotic exoskeleton and its con-
trol method are evaluated. Finally, conclusions are summarized
in Section VI.

II. ROBOTIC EXOSKELETON SYSTEM

The proposed robotic exoskeleton is supposed to be attached
to the lateral side of a user directly. The architecture of the
exoskeleton system is shown in Fig. 1. The robotic exoskeleton
system consists of four main links (two links for shoulder
joint motion and another two links for elbow joint motion),
a frame, three dc motors, an upper-arm holder, a wrist force
sensor (strain gauges), driving wires, wire tension sensors, and
driving motors. An air cushion is attached inside of the upper
arm holder. By adjusting the air pressure of the air cushion, the
upper arm holder can be properly attached to the upper arm of
any user. The generated wrist force (i.e., the force caused from
the motion difference between the robotic exoskeleton and the
user) is measured by the wrist force sensor in three dimensions.
The shoulder vertical and horizontal flexion-extension of the
user (see Fig. 2) are assisted by the robotic exoskeleton system
by activating the upper arm holder, which is attached on the
main link-2 for shoulder joint motion, using driving wires
driven by two dc motors. Since the center of rotation of the
exoskeleton’s shoulder joint is different from that of human
shoulder joint, the radius of rotational joint is adjusted in
accordance with the joint motion. Assuming that the physically
weak persons use a wheel chair, the heavy parts such as the dc
motors are supposed to be attached on the frame of the wheel
chair. The basic structure of the shoulder joint of the robotic
exoskeleton is the same as that in our previous study [2]. The
shoulder angle is measured by potentiometers attached to the
shoulder link-1 and the shoulder link-2 of the exoskeleton.
The wire tension (driving force) is measured by the wire

Fig. 1. Architecture of the robotic exoskeleton.

tension sensors. The signals from the sensors are sampled
at a rate of 2 kHz and low-pass filtered at 8 Hz.

The elbow flexion-extension motion of the user (see Fig. 2) is
assisted by the exoskeleton system by activating the elbow joint
pulley, which is attached between the arm link-1 and the arm
link-2, using the driving wire. The driving wire for the elbow
motion is activated by another dc motor. In order to make the
movable link light weight, the dc motor is fixed on the frame.



KIGUCHI et al.: NEURO-FUZZY CONTROL OF A ROBOTIC EXOSKELETON WITH EMG SIGNALS 483

Fig. 2. Movement of robotic exoskeleton.

Fig. 3. Location of electrode.

Human elbow joint is mainly activated by biceps and triceps,
and moves in 1 degree-of-freedom (DOF). Human shoulder
joint is activated by many muscles such as deltoid, pectoralis
major, teres major, and trapezius, and moves in 3 DOF. In this
study, user’s skin surface EMG signals of biceps (lateral and
medial parts), triceps (lateral and medial parts), deltoid (ante-
rior and posterior parts), pectoralis major (clavicular part), and
teres major are measured and used for control of the proposed

robotic exoskeleton system. A pair of electrode is attached
on each measuring muscle to measure the EMG signal. The
location of each electrode is shown in Fig. 3. The measured
EMG signals are amplified by an EMG amplifier and sampled
at a rate of 2 kHz.

Usually, the limitation of the movable range of human elbow
is between and 145 and that of human shoulder are 180 in
flexion, 60 in extension, 180 in abduction, and 75 in adduc-
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Fig. 4. Example of EMG and MAV.

tion. Considering the minimally required motion in everyday
life and the safety of the user, the elbow joint motion of the pro-
posed exoskeleton system is limited between 0 and 120 , and
the limitation of the shoulder joint motion of the proposed ex-
oskeleton system are decided to be 0 degrees in extension and
adduction, 90 in flexion, and 90 in abduction.

III. EMG SIGNAL

The EMG signal (0.01–10 mV, 10–2,000 Hz) is one of the
most important biological signals which directly reflect human
muscle activities since it is generated when the muscles contract.
The EMG is a measure of an integration of electrical potentials
from many muscle fibers [20]. Therefore, the generating motion
of the robot user can be directly predicted by monitoring the
user’s skin surface EMG signals. Since the EMG signal con-
sists of wide range of frequency, it is very difficult to reduce
noise by filtering. Furthermore, it is difficult to use raw EMG
data as input information of the controller. Therefore, features
have to be extracted from the noisy raw EMG data. We have
used mean absolute value (MAV) considering its effectiveness
for real-time control, although there are many other feature ex-
traction methods, e.g., mean absolute value slope, zero cross-
ings, slope sign changes, or waveform length [21]. The equation
of MAV is written as

(1)

where is the voltage value at sampling, is the number
of samples in a segment. The number of samples is set to be
100 and the sampling time is set to be 1 ms in this study. Fig. 4
shows an example of raw EMG signal and its MAV.

Eight kinds of EMG signals (lateral and proximal parts of
biceps, lateral and proximal parts of triceps, anterior and poste-
rior parts of deltoid, clavicular part of pectoralis major, and teres
major) are used to predict the user’s generating upper-limb mo-
tion (shoulder vertical and horizontal flexion-extension motion
and elbow flexion-extension motion) in this study. The location
of each electrode is shown in Fig. 3. Deltoid, pectoralis major,
and teres major are mainly involved in shoulder motion. Biceps
and triceps are mainly involved in elbow motion.

It is not easy to obtain the same EMG signals for the same
motion even with the same person. The EMG signals contain
a lot of noise. Furthermore, each muscle activity for a certain
motion is highly nonlinear, because the responsibility of each
muscle for the motion varies in accordance with joint angles,
especially in a complex joint like the shoulder joint. One muscle
is not only concerned with one motion but also another kinds of
motion. Moreover, activity level of each muscle and the way of

Fig. 5. Membership functions.

using each muscle for a certain motion is different between per-
sons. Physiological condition of the user also affects the activity
level of muscles. In addition to these problems, the activity level
of some muscles such as biceps (biarticular muscle) is affected
by the motion of the shoulder joint, because the load acting on
the shoulder joint affects the activity level of biceps. The rela-
tionship between the load acting on the shoulder joint and the
change in muscle activity level of biceps is different between
persons. Furthermore, the activity level of muscles is affected
by the external load acting on the arm.

IV. NEURO-FUZZY CONTROLLER

The proposed hierarchical controller consists of three stages
(first stage: input signal selection stage, second stage: posture re-
gion selection stage, and third stage: neuro-fuzzy control stage).
In the first stage of the proposed hierarchical controller, the
EMG based control or the wrist sensor based control is applied
in accordance with the muscle activity levels of the robot user. In
the second stage of the proposed hierarchical controller, a proper
neuro-fuzzy controller is selected according to the shoulder and
the elbow angle region. In the third stage of the proposed hier-
archical controller, the desired torque command for each joint
is calculated with the neuro-fuzzy controllers to realize the ef-
fective motion assist for the robot user.

A. Input Signal Selection Stage

In the first stage of the controller, proper input information for
the controller is selected in accordance with the user’s muscle
activation levels. The control is carried out based on the EMG
signals when the robot user is activating his/her shoulder and/or
upper-arm muscles. However, when the muscle activity level of
the robot user is not so high (i.e., when the robot user is not ac-
tivating his/her shoulder and/or upper-arm muscles), the control
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Fig. 6. Neuro-fuzzy controller.

is carried out based on the wrist force sensor signals in the pro-
posed control method. Consequently, both elbow and shoulder
motion is controlled based on the generated wrist force when
the activity level of all muscle is low, and only elbow motion is
controlled based on the generated wrist force when the activity
level of only the upper-arm muscle is low. When the activity
level of the muscle is medium, both the skin surface EMG sig-
nals and the generated wrist force are used simultaneously for
the control. In the case of control based on the generated wrist
force, force control is carried out to make the generated wrist
force become zero. By applying sensor fusion with the skin sur-
face EMG signals and the generated wrist force, error motion
caused by little EMG levels and the external force affecting to
human arm can be avoided.

The membership function (PB: positive big) of each muscle
is used to switch the controller input information. By applying
the membership function of each muscle for switching, the input
information for the controller is gradually switched in this stage.

B. Posture Region Selection Stage

In the second stage of the controller, proper neuro-fuzzy con-
troller is selected in accordance with the user’s arm posture. The
EMG-based control rules are sometimes completely different
when the arm posture is changed since role of each muscle is
changed according to the arm posture. In order to cope with
this problem, multiple neuro-fuzzy controllers have been de-
signed and applied under the certain arm posture. Consequently,
the proper neuro-fuzzy controller is selected according to the
shoulder and elbow posture region in this stage. The details of
each neuro-fuzzy controller are presented in the next sub-sec-
tion.

The movable range of elbow flexion/extension angle,
shoulder vertical flexion/extension angle, and shoulder hori-
zontal flexion/extension angle are divided into three regions
(FA: flexed angle, IA: intermediate angle, and EA: extended

Fig. 7. Experimental setup.

angle), respectively. Therefore, the movable range of the elbow
motion is divided into three regions and that of the shoulder
motion is divided into nine regions. The membership functions
of the elbow and shoulder region are depicted in Fig. 5. By ap-
plying these membership functions, the appropriate controllers
are moderately selected in accordance with the arm posture of
the robot user. Thus, four kinds of neuro-fuzzy controller might
be used at the same time in maximum for shoulder motion and
two kinds of neuro-fuzzy controller might be used at the same
time in maximum for elbow motion.

C. Neuro-Fuzzy Control Stage

The desired torque command for each joint is derived by the
neuro-fuzzy control in the third stage of the controller. One
neuro-fuzzy controller is prepared for each posture region. The
structure of the neuro-fuzzy controller is basically the same
as the conventional simplified fuzzy controller since it can be
easily designed based on our anatomical knowledge and the
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Fig. 8. Experimental results (Subject A).

results of previously performed experiment. However, the
weight of the consequent part of control rules for the elbow
motion assist is described by equation in order to take into
account the subeffect caused by shoulder motion. Therefore,
the main-effect of each muscle is taken into account in the
antecedent part and the subeffect of some muscles is taken
into account in the consequent part in this neuro-fuzzy control
method. Even though there exists difference in anatomy and the
way of muscle use between persons, the neuro-fuzzy controllers
are able to adapt themselves to any robot user by adjusting both
the antecedent part and the consequent part of the controllers
using the backpropagation learning algorithm. The architecture
of the neuro-fuzzy controller is shown in Fig. 6. Here, means
the summation of the inputs and means the multiplication of
the inputs. Two kinds of nonlinear functions ( and ) are
applied to express the membership function of the neuro-fuzzy
controller

(2)

(3)

(4)

(5)

where is a threshold value and is a weight.
The initial fuzzy IF–THEN control rules are designed based

on the analyzed human elbow and shoulder motion patterns in

the pre-experiment, and then transferred to the neural network
form. The EMG characteristics of human elbow and shoulder
muscles studied in another research [22]–[25] are also taken into
account. The input variables for the neuro-fuzzy controller are
8 kinds of MAVs of EMG. Three kinds of fuzzy linguistic vari-
ables (ZO, PS, and PB) are prepared for the MAVs of EMG.
There are 21 rules (ten rules for shoulder and eleven rules for
elbow) in each neuro-fuzzy controller. Four kinds of MAVs of
EMG (ch.1: Deltoid – anterior part, ch.2: Deltoid – posterior
part, ch.3: Pectoralis, and ch.4: Teres major) are used as input
variables for the weights in the consequent part of the control
rules generating the desired elbow joint angle. Consequently,
the weights in the consequent part of the control rules generating
the desired elbow joint angle are the function of four kinds of
MAVs of EMG (chs.1–4). Note that four input variables men-
tioned above for the weights in the consequent part are different
from the input variables in the antecedent part of the control
rules for elbow motion. Thus, the subeffect of the shoulder mus-
cles (the subeffect of torque generated by the shoulder muscles)
is taken into account in the consequent part of the control rules
for elbow motion.

The outputs of the neuro-fuzzy controller are the torque com-
mand for shoulder motion, and the desired impedance parame-
ters and the desired angle for elbow motion of the exoskeleton
system. The torque command for the shoulder joint of the ex-
oskeleton system is then transferred to the force command for
each driving wire. The relation between the torque command
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Fig. 9. Experimental results (Subject B).

for the shoulder joint of the exoskeleton system and the force
command for driving wires is written as the following equation:

(6)

where is the torque command vector for the shoulder joint
of the exoskeleton system, is the force command vector
for the driving wires, and is the Jacobian which relates
the exoskeleton’s joint velocity to the driving wire velocity.
Force control is carried out to realize the desired force ( ) in
driving wires by the driving motors for shoulder motion of the
exoskeleton system.

Impedance control is performed with the derived impedance
parameters and the derived desired angle for the elbow joint
control of the exoskeleton system. The equation of impedance
control is written as

(7)

where denotes torque command for the elbow joint of the ex-
oskeleton system, is the moment of inertia of the arm link-2
and human subject’s forearm, is the viscous coefficient gen-
erated by the neuro-fuzzy controller, is the spring coefficient
generated by the neuro-fuzzy controller, is the desired joint
angle generated by the neuro-fuzzy controller, and is the mea-
sured elbow joint angle of the exoskeleton system. The torque
command for the elbow joint of the exoskeleton system is then
transferred to the torque command for the driving motor for the
elbow motion of the exoskeleton system.

D. Controller Adaptation

The controller adaptation must be performed to realize the
desired motion assist for anybody. Consequently, the controller
should be able to adapt itself to physical and physiological con-
dition of any robot user. Furthermore, the assist level by the
robotic exoskeleton should be adjusted according to the user’s
condition until the amount of the EMG signals of the user’s mus-
cles becomes the desired level. In this study, adjustment of the
controller is performed using the backpropagation learning al-
gorithm. All of antecedent part and some of consequence part
(the weights in consequence part of rules generating the re-
quired shoulder torque and the weights in consequence part
of rules generating the desired elbow joint angle) of the fuzzy
IF–THEN control rules are adjusted during the controller adap-
tation process which is carried out for several minutes before
operation. The equations of the evaluation function are written
as

(8)

(9)

where and are the desired shoulder and elbow angle
calculated from the desired wrist trajectory, and are the
measured shoulder and elbow angle, is a coefficient which
changes the degree of consideration of the muscle activity min-
imization, is the desired muscle activity level in ch.i,
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Fig. 10. Experimental results (Subject C).

and is the measured muscle activity level in ch.i. The
desired muscle activity levels are decided for each user based
on the user’s physical condition. By evaluating the amount of
user’s EMG signals as well as the motion error in the evalua-
tion function of the back-propagation learning algorithm during
the upper-limb motion for the controller adaptation, the assist
level of the robotic exoskeleton system can be adjusted until the
amount of user’s EMG signals becomes the desired level.

The desired wrist trajectory, which results in cooperative mo-
tion of the elbow and shoulder joints, is indicated to the user by
the desired trajectory indicator during the controller adaptation
process. The controller is adjusted to reduce the trajectory error
(the position error between the desired trajectory and the mea-
sured trajectory) during the controller adaptation process. This
controller adaptation method enables the easy whole controller
adaptation to each user.

V. EXPERIMENT

In order to evaluate the effectiveness of the proposed con-
trol method, upper-limb motion assist (power assist) experiment
has been carried out with three healthy human subjects (Sub-
jects A and B are 22 year-old males, Subject C is a 23–year-old
male). The experimental setup is shown in Fig. 7 (the detailed
architecture of the robotic exoskeleton was described in Sec-
tion II). In order to examine the effectiveness of the proposed
exoskeleton system in motion assist for both the elbow and
shoulder joint of the human subject, cooperative motion of the
elbow and shoulder joints is performed in the experiment. In

this experiment, human subjects are supposed to move their
wrist forward horizontally from the initial position and back-
ward again to the initial position following the target trajec-
tory with a 2 kg weight in their hand. The initial position of
the upper-limb is set to be 0 [deg] in both horizontal and ver-
tical flexion angle of the shoulder joint, and 120 [deg] in flexion
angle of the elbow joint. The desired trajectory of the wrist on
the horizontal plane is described as

(10)

The controller adaptation is carried out for about 5 min before
every experiment. All experiment is performed with and without
the assist of the exoskeleton system for comparison. If the pro-
posed exoskeleton system effectively assists the upper-limb mo-
tion, the activity levels of the EMG signals of the activated mus-
cles are supposed to be reduced.

The experimental results of the Subject A without and with
assist of the proposed exoskeleton system are shown in Fig. 8(a)
and (b), respectively. Only the results the EMG signals of ch. 1
(anterior part of deltoid), ch. 2 (posterior part of deltoid), and
ch. 5 (medial part of biceps), which represent the shoulder and
elbow muscles, are depicted here. The experimental results of
the Subject B and C are shown in Figs. 9 and 10, respectively.
From these experimental results, one can see that the activation
levels of the EMG signals of the elbow and shoulder muscles
were reduced when the human subjects’ motions were assisted
by the exoskeleton. These results show the effectiveness of the
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proposed exoskeleton system and its control method in human
upper-limb motion assist.

VI. CONCLUSION

In this paper, we proposed a robotic exoskeleton for human
upper-limb motion assist, a hierarchical neuro-fuzzy controller
for the robotic exoskeleton, and its adaptation method in order
to assist the motion of physically weak persons such as elderly,
disabled, and injured persons. The proposed hierarchical con-
troller consists of three stages (first stage: input signal selec-
tion stage, second stage: posture region selection stage, and third
stage: neuro-fuzzy control stage. The skin surface EMG signals,
which directly reflect the human motion intention, are mainly
used as controller input signals. In the proposed neuro-fuzzy
control method, the main-effect of each muscle is taken into ac-
count in the antecedent part and the subeffect of some muscles
is taken into account in the consequent part. The effectiveness
of the proposed system was evaluated by experiment.
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