Exoskeletons for Gait Assistance and Training of the Motor Impaired

Sunil K. Agrawal, Ph.D.

Professor of Mechanical Engineering Director, Mechanical Systems Laboratory University of Delaware, Newark, DE 19716.

Website: http://mechsys4.me.udel.edu/research/medical_robotics

NIH Bioengineering Research Partnership: RO1 HD 38582 (2002-2007) NIDRR SCI Model Systems Center Grant-RIC (2006-2011), NIH R24-RIC (2006-2008)

Robotics – *Rehabilitation and Neuro-motor Training Special Need Infants*

J. C. Galloway, J.C. Ryu, S. K. Agrawal, "Babies driving robots: Self-generated mobility in very young infants", *Intelligent Service Robotics*, 2008.

Gait Rehabilitation after Stroke

- US: 7.7 million people with stroke, 700K new cases 250K people with spinal cord injury, 11K new cases
- Stroke leading cause of functional disability
 - one-sided paralysis hemiparesis
 - survivors have residual gait deficits
 - slower than normal speed of walking
 - asymmetric gait, less time on affected limb
 - lack of ankle dorsi-flexion: foot drop, toe drag, pelvic elevation, leg circumducts

- limited ground reaction: issue of weight shift, increased risk of fall.

Rehabilitation is important for recovery

Manual rehab: labor intensive, expensive
Machine rehab: Not optimized for learning

Edgerton Lab (SCI manual Rehab)

Motor Learning Questions ?

- Brain has ability to change: *Neuro-plasticity*
 - Injury-induced plasticity
 - maximize function in spite of damage
 - brain cells surrounding the damaged area change to take over function
 - Developmental plasticity: Infants
- Learning requires feedback during training
 - Frequent feedback improves performance but is bad for retention
- Can robots retrain gait of healthy subjects?
- What role does feedback play during training?
- Can a chronic stroke subject improve gait?
- What is a good retraining protocol?

Un-motorized and Powered Exoskeletons: Gait Rehab

- Gravity Balancing Orthosis (GBO)
- Less expensive and Safe
- Subjects trained with
 - Altered gravity at joints
 - Visual feedback, Patient control

- Active Leg EXoskeleton (ALEX)
- Training flexibility due to motors
- Subjects trained with
 - Forces on the foot to lie within tunnels
 - Visual feedback, Patient control

S. Banala, S. K. Agrawal, A. Fattah, J. P. Scholz, V. Krishnamoorthy, K. Rudolph, W. L. Hsu, "Gravity Balancing Leg Orthosis and its Performance Evaluation", *IEEE Trans. in Robotics*, Vol. 22, No. 6, 2006, 1228-1239.

Gravity Balancing Orthosis (GBO)

- Gravity plays an important role in human motion
- At slow speeds, gravity is dominant joint torque
- How would leg respond if gravity is lowered during swing?
- How to exploit the results in gait retraining?
- How to design an exoskeleton to achieve this property?
- How to provide feedback to optimize learning?

What is Gravity Balancing ?

Sunil K. Agrawal, Glenn Gardner, Stephen Pledgie, "Design and Fabrication of a Gravity Balanced Planar Mechanism Using Auxiliary Parallelograms", *Journal of Mechanical Design, Trans of the ASME*, Vol. 123, No. 4, 2001, 525-528.

Gravity Balancing: Design Principle

- System remains gravity balanced if the leg abducts
- Account for weight of leg and Exoskeleton
- Parameters relate to fractional balancing

S. K. Agrawal and A. Fattah, "Theory and Design of an Orthotic Device for Full or Partial Gravity-Balancing of a Human Leg During Motion", *IEEE Trans on Neural systems and Rehabilitation Engineering*, 2004, Vol. 12, No. 2, 157-165.

GBO: Exoskeleton Features

Gait involves interaction between upper and lower body: 4 DOFs added wrt walker
Encoders collect joint/trunk data, Two 6-axis force/torque sensors
real-time visual display of their gait: angle-angle plot, Cartesian plots

Static Tests: Does GBO affect Muscle EMGs?

Comment: EMG is not zero

- Passive elasticity of muscles & tissue
- Complete relaxation needs training
- Joint alignment with soft tissue
- Some device friction

GBO: Can it alter the range of motion of the Leg?

Increase in Range of Motion

S. K. Agrawal, S. Banala, A. Fattah, V. Sangwan, V. Krishnamoorthy, J. P. Scholz, and W. L. Hsu, "Assessment of Motion of a Swing Leg and gait Rehabilitation with a Gravity Balancing Exoskeleon", *IEEE Trans. on Neural Systems and Rehab Engineering*, Vol. 15, No. 3, 2007, 410-420.

GBO: Range of Motion Healthy & Stroke Subjects

S. Banala, S. K. Agrawal, A. Fattah, J. P. Scholz, V. Krishnamoorthy, K. Rudolph, W. L. Hsu, "Gravity Balancing Leg Orthosis and its Performance Evaluation", *IEEE Trans. in Robotics*, Vol. 22, No. 6, 2006, 1228-1239.

GBO: Gait Training of a Stroke Survivor

GBO: Training Results in the Device

Active Leg Exoskeleton (ALEX)

- Assistance to the foot outside a template tunnel during training, similar to manual therapy.
- Training parameters
 - Diameter of the tunnel
 - Force field characteristics within and outside the tunnel
 - Change in the foot template
 - Change in the treadmill speed
 - Visual display angle plots, foot position

Active Leg Exoskeleon (ALEX): Design

- Similar support structure as the GBO, does not use springs
- Hip and knee joints are actively driven by servomotors
- Real-time control Using dSpace, encoder and load cell data
- Visual feedback of foot trajectory

Tech Challenges !!!

- How to back-drive the motors in the presence of friction?
- Model-based control requires parameters of machine and human

Clinical Challenges !!!

- Learned helplessness avoid habituation to specific inputs
- Resist undesirable motions
- User participation key to learning

ALEX: Force-field Controller

S. K. Banalaa, A. Kulpe, and S. K. Agrawal, "A Powered Leg Orthosis for Gait Rehabilitation of Motor Impaired Patients", **IEEE International Conference on Robotics and Automation**, 2007. (Also ICORR 2007)

ALEX: Pre/Post Training Videos of a Healthy Subject

no assistance / feedback - post training

ALEX: Training Study with Stroke Subjects

Session 2: 0.9 mph

Post 15 Session training: 0.9 mph

Post 15 Session training: 1.6 mph

Baseline: 1.3 mph

10 Session Training: 1.3 mph

10 Session Training: 1.8 mph

S. K. Banala, S. H. Kim, S. K. Agrawal, and J. P. Scholz, "Robot Asssited Gait Training with Active Leg Exoskeleton", under revision **IEEE Trans. on neural Systems and Rehab Engineering**, 2008.

Swing-Assist Un-motorized Exoskeletons (SUE)

springs anteriordirected force yulleys treadmill

- Torsion springs at hip and knee joints.
- Energy from treadmill charges springs during stance and releases during swing
- **Design Parameters** Torsion constants and equilibrium position of the springs
- Walking model used to optimize the design

K. K. Mankala, S. K. Banalaa, and S. K. Agrawal, "Passive Swing Assistive Exoskeleton for Motor Incomplete Spinal Cord Injury Patients", **IEEE International Conference on Robotics and Automation**, 2007.

SUE: Preliminary Results

Conclusions & Future Work

• Robotics can assist in gait retraining of stroke survivors through appropriate exoskeletons integrating motor learning principles

• Studies with stroke survivors suggest that un-motorized gravity modulating orthoses with intermittent visual feedback can improve gait. Huge potential for (smaller) clinics due to lower costs.

• Results with ALEX suggest that force constraints on the foot with feedback can improve gait of stroke survivors and enhance movements of healthy subjects - huge potential in sports training

• *BRP R01 renewal* (Scored < 10%, 5-year, \$3.8M, Expecting May) – Bilateral GBO and ALEX integrated with 2 DOF AFO, Clinical testing with 30 subjects to compare training with GBO, ALEX, BWSTT.

Acknowledgments

Mechanical Systems Group

Sai K. Banala, PhD Student* Vivek Sangwan, PhD Student Ji-Chul Ryu, PhD Student Zaeem Khan, PhD Student Liz Brackbill, PhD Student Susanne Kirchel, M.S. Student (TU Stuttgart)

K. Pathak, PhD Abhishek Agrawal, M.S. Sean McIntosh, M.S. Helge Keubler, M.S.

Physical Therapy Group

John P. Scholz, PhD, Professor Stuart Binder-Macleod, PhD, Professor Cole Galloway, PhD, Associate Professor

V. Krishnamoorthy, PhD, Research ScientistH. S. Kim, PhD, Research ScientistR. Perumal, PhD, Research Scientist