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Robotics – Rehabilitation and Neuro-motor Training
Special Need Infants

J. C. Galloway, J.C. Ryu, S. K. Agrawal, “Babies driving robots: Self-generated mobility in very young infants”,  
Intelligent Service Robotics,  2008.



Gait Rehabilitation after Stroke

• US: 7.7 million people with stroke, 700K new cases
250K people with spinal cord injury, 11K new cases

• Stroke - leading cause of functional disability
- one-sided paralysis - hemiparesis
- survivors have residual gait deficits
- slower than normal speed of walking
- asymmetric gait, less time on affected limb
- lack of ankle dorsi-flexion: foot drop,

toe drag, pelvic elevation, leg circumducts
- limited ground reaction: issue of weight shift,

increased risk of fall.

Edgerton Lab (SCI manual Rehab)

• Rehabilitation is important for recovery
-Manual rehab: labor intensive, expensive
-Machine rehab: Not optimized for learning



Motor Learning Questions ?

• Brain has ability to change: Neuro-plasticity
- Injury-induced plasticity

- maximize function in spite of damage
- brain cells surrounding the damaged

area change to take over function 
- Developmental plasticity: Infants

• Learning requires feedback during training
- Frequent feedback improves performance but 
is bad for retention

• Can robots retrain gait of healthy subjects?
• What role does feedback play during training?
• Can a chronic stroke subject improve gait?
• What is a good retraining protocol?



Un-motorized and Powered Exoskeletons: Gait Rehab

• Gravity Balancing Orthosis (GBO)
• Less expensive and Safe
• Subjects trained with

• Altered gravity at joints 
• Visual feedback, Patient control

• Active Leg EXoskeleton (ALEX)
• Training flexibility due to motors
• Subjects trained with

• Forces on the foot to lie within tunnels
• Visual feedback, Patient control

S. Banala, S. K. Agrawal, A. Fattah, J. P. Scholz, V. Krishnamoorthy, K. Rudolph, W. L. Hsu, “Gravity Balancing Leg 
Orthosis and its Performance Evaluation”,  IEEE Trans. in Robotics, Vol. 22, No. 6, 2006, 1228-1239.



Gravity Balancing Orthosis (GBO)
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• Gravity plays an important role in human motion
• At slow speeds, gravity is dominant joint torque

• How would leg respond if gravity is lowered
during swing?

• How to exploit the results in gait retraining?

• How to design an exoskeleton to achieve this
property?

• How to provide feedback to optimize learning?



What is Gravity Balancing ?

Counter weights Springs

Gravity balancing is equivalent to PE being constant.

Fix center of mass

Step 1 Step 2 Step 3

Sunil K. Agrawal, Glenn Gardner, Stephen Pledgie, “Design and Fabrication of a Gravity Balanced Planar Mechanism 
Using Auxiliary Parallelograms”, Journal of Mechanical Design, Trans of the ASME, Vol. 123, No. 4, 2001, 525-528. 



Gravity Balancing: Design Principle

OH : Initially fixed

• System remains gravity balanced if the leg abducts
• Account for weight of leg and Exoskeleton
• Parameters relate to fractional balancing

S. K. Agrawal and A. Fattah, “Theory and Design of an Orthotic Device for Full or Partial Gravity-Balancing of a Human Leg
During Motion”, IEEE Trans on Neural systems and Rehabilitation Engineering, 2004, Vol. 12, No. 2, 157-165. 



GBO: Exoskeleton Features

• Gait involves interaction between upper and lower body: 4 DOFs added wrt walker
• Encoders collect joint/trunk data, Two 6-axis force/torque sensors
• real-time visual display of their gait: angle-angle plot, Cartesian plots



Static Tests: Does GBO affect Muscle EMGs? 

Comment: EMG is not zero

• Passive elasticity of muscles & tissue

• Complete relaxation needs training

• Joint alignment with soft tissue

• Some device friction

Hip 
flexion

Knee 
flexion



GBO: Can it alter the range of motion of  the Leg?

Increase in Range of Motion
S. K. Agrawal, S. Banala,  A. Fattah, V. Sangwan,  V. Krishnamoorthy, J. P. Scholz, and W. L. Hsu, “Assessment of Motion 
of a Swing Leg and gait Rehabilitation with a Gravity Balancing Exoskeleon”,  IEEE Trans. on Neural Systems and Rehab 
Engineering, Vol. 15, No. 3, 2007, 410-420.



GBO: Range of Motion Healthy & Stroke Subjects

S. Banala, S. K. Agrawal, A. Fattah, J. P. Scholz, V. Krishnamoorthy, K. Rudolph, W. L. Hsu, “Gravity Balancing Leg 
Orthosis and its Performance Evaluation”,  IEEE Trans. in Robotics, Vol. 22, No. 6, 2006, 1228-1239.

Increase in joint excursion
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GBO: Gait Training of a Stroke Survivor 
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• Each session: 4 blocks of 10  mins training

• FES on dorsi and plantar flexors

• Visual guidance: continuous or intermittent 



GBO: Training Results in the Device 
Device only balanced (0% leg balancing)
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Active Leg Exoskeleton (ALEX)

• Assistance to the foot outside a template 
tunnel during training, similar to manual 
therapy.

• Training parameters
- Diameter of the tunnel
- Force field characteristics 

within and outside the tunnel
- Change in the foot template
- Change in the treadmill speed
- Visual display – angle plots, 

foot position
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Active Leg Exoskeleon (ALEX): Design

• Similar support structure as the 
GBO, does not use springs

• Hip and knee joints are actively 
driven by servomotors

• Real-time control Using dSpace, 
encoder and load cell data

• Visual feedback of foot trajectory

Tech Challenges !!!
• How to back-drive the motors in 

the presence of friction?
• Model-based control requires 

parameters of machine and human

Clinical Challenges !!!
• Learned helplessness – avoid 

habituation to specific inputs
• Resist undesirable motions
• User participation – key to learning



ALEX: Force-field Controller
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• within walls: user-controlled motion 

• walls guide foot along desired trajectory

wall steepness

S. K. Banalaa, A. Kulpe, and S. K. Agrawal, “A Powered Leg Orthosis for Gait Rehabilitation of Motor Impaired 
Patients”,  IEEE International Conference on  Robotics and Automation, 2007. (Also ICORR 2007)
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ALEX: Pre/Post Training Videos of a Healthy Subject

no assistance / feedback – post training before training



ALEX: Training Study with Stroke Subjects

Session 2: 0.9 mph Post 15 Session training: 0.9 mph Post 15 Session training: 1.6 mph

Baseline: 1.3 mph 10 Session Training: 1.3 mph 10 Session Training: 1.8 mph

S. K. Banala, S. H. Kim, S. K. Agrawal, and J. P. Scholz, “Robot Asssited Gait Training with Active Leg 
Exoskeleton”,  under revision IEEE Trans. on neural Systems and Rehab Engineering, 2008. 



Swing-Assist Un-motorized Exoskeletons (SUE)

K. K. Mankala, S. K. Banalaa, and S. K. Agrawal, “Passive Swing Assistive Exoskeleton  for Motor Incomplete Spinal Cord Injury 
Patients”,  IEEE International Conference on  Robotics and Automation, 2007.

• Torsion springs at hip and knee joints.
• Energy from treadmill charges springs during stance and releases during swing
• Design Parameters - Torsion constants and equilibrium position of the springs
• Walking model used to optimize the design



SUE: Preliminary Results



Conclusions & Future Work

• Robotics can assist in gait retraining of  stroke survivors through 
appropriate exoskeletons integrating motor learning principles

• Studies with stroke survivors suggest that un-motorized gravity 
modulating orthoses with intermittent visual feedback can improve 
gait. Huge potential for (smaller) clinics due to lower costs.

• Results with ALEX suggest that force constraints on the foot with 
feedback can improve gait of stroke survivors and enhance movements 
of healthy subjects - huge potential in sports training

• BRP R01 renewal (Scored < 10%, 5-year, $3.8M, Expecting May) –
Bilateral GBO and ALEX integrated with 2 DOF AFO, Clinical testing 
with 30 subjects to compare training with GBO, ALEX , BWSTT.
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