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Abstract— Design of a flapping mechanism for flapping
wing micro air vehicles (FWMAV) is presented based on a
mathematical model of insect thorax. This model also includes
an aerodynamic model of flapping wings. Using experiments
on dynamically scaled wings and numerical optimization, the
mechanism is tuned for peak aerodynamic performance. The
thorax model is used to understand the mechanics of the
biological flapping mechanism and reveals the significance of
rotational stiffness and inertia distribution in flapping wings.
Experiments conducted on the actual thorax based mechanism
validate theoretical findings and also show significant lift
generation capability.

I. INTRODUCTION

Flapping wing micro Air vehicles (FWMAVs) represent
an emerging class of aerial vehicles that can be used for
numerous applications that include searching for survivors
in burning buildings and under collapsed structures, sensing
of chemical leaks in industry, detection of radiations in
nuclear plants as well as surveillance and reconnaissance.
Inspired by the sophisticated biological designs of insects
and hummingbirds, FWMAVs are expected to show similar
aerial maneuverability. Recent success of micro scale robotic
insect experiment brings us closer to achieving this goal [13].

In the quest for developing FWMAV, engineers have
focused on the design of flapping mechanisms for generating
insect-like wing motion [7], [8]. Typically, this involves
optimizing the parameters of the mechanism with the aim
to minimize the error between the generated motion and a
given insect-like wing motion. However, the main difficulty
lies in the implementation of the design at FWMAV scale
due to the impact loads of the beating wings near the end of
the stroke caused by high flapping frequency. The impacts
waste energy in noise and require strength in the mechanism,
which adds weight and renders the design incapable of
flight. Furthermore, mimicking insect wing motion does not
guarantee peak aerodynamic performance [1]. Therefore,
this approach reveals a disconnect between the optimal
aerodynamic performance and mechanism design.

In our work, we develop a simplified mathematical model
of insect thorax which allows elastic storage of energy.
Computer simulations of the model show insect-like wing
motion including passive flip. we conduct aerodynamic
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tests on dynamically scaled wings to determine the optimal
kinematics. The optimal kinematics is then related to the
parameters of the thorax-model in order to ‘tune’ it for the
peak aerodynamic performance. The thorax model is used as
a basis for the design of a flapping mechanism. This design
mimics the mechanics of the insect thorax actuation rather
than the insect wing motion. Micro DC motor (typically used
in model aircraft) is used to power the mechanism.

II. MODEL OF INSECT THORAX

The insect thorax consists of a highly elastic exoskeleton
containing flight muscles. These muscles contract alternately
and move the tergal plate which causes the wings to flap
through a hinge mechanism as shown in Fig. 1A and B. As
the wings approach the end of each stroke, the kinetic energy
of the wing is stored as strain energy due to the deformation
of the thorax shown shaded in Figs. 1A and B. We denote
the flap angle by θ f while θe is the excitation angle or the
flap angle assuming no deformation of thorax exoskeleton.
The difference θ f − θe results in storage of strain energy.
As the wing flaps, it twists passively along the span at the
end of each stroke due to the aerodynamic and inertial loads
as shown in Fig. 1C. The remarkable design of insect wing
structure prevents the wing from twisting beyond an optimal
angle of attack α∗ [14]. The rotational stiffness increases
sharply and maintains α∗ during the flapping phase of the
motion.

Fig. 1. Schematic showing the working of insect thorax mechanism and
a simplified model to capture its essential mechanics.

We model the thorax flapping mechanism by replacing
the thorax flight muscles by an actuator, which provides
the excitation as shown in Fig. 1D. The tergal plate and
the elastic wing twist at the wing base are modeled by



nonlinear springs. The wing is assumed to be rigid which
undergoes flapping and rotational motions denoted by the
angles θ f and θr respectively. We attach a coordinate frame
Fw : (x̂w , ŷw, ẑw) to the rigid wing as shown in Fig. 1D
with the origin denoted by B at the wing base. The x̂w axis
is normal to the wing surface, ŷw axis is in the spanwise
direction along the wing leading edge and ẑw is along the
chordwise direction.

A. Equations of motion

The equations of motion of the system are given below

M(q)q̈+C(q, q̇)+G(q) = Q, (1)

where q = (θ f ,θr)T and

M(q) =
(

sin2 θrJx +cos2 θrJz cosθrJyz
cosθrJyz Jy

)
,

C(q, q̇) =
(

(Jx −Jz) sin(2θr)θ̇ f θ̇r −Jyz sinθr θ̇r
2

− 1
2 (Jx−Jz) sin(2θr)θ̇ f

2

)
,

G(q) =
(
−Kf 1(θe −θ f )−Kf 2(θe −θ f )3

Kr1θr +Kr2θ3
r +Kr3θr

)
,

Q(q, q̇) =

( −cosθr ∑N
i=1 ridFi

−0.5∑N
i=1 cidFi −μrθ̇r

)
,

where Jx, Jz and Jyz are the wing moments and product
of inertia in Fw frame, θe = Θe cosωet is the sinosoidal
excitation angle where Θe is the excitation amplitude and
ωe is the excitation frequency. K f 1, Kf 2 are the parameters
of the flapping spring and Kr1, Kr2, Kr3 are parameters of
the rotational spring, μr is the viscous damping coefficient
about the rotational axis. The parameter Kr3 models the sharp
increase in rotational stiffness which locks the wing at the
optimal angle of attack α∗ during the flapping phase. Kr3 = 0
if |θr| < θ ∗

r and non-zero if |θr| ≥ θ ∗
r . Where θ∗

r equals
π/2−α∗. For the lock to take effect, Kr3 � Kr1,Kr2.

B. Aerodynamic model

The aerodynamic force on flapping wings is normal to the
wing surface due to dominance of pressure force [10]. It can
be modeled using blade element method (BEM) in which the
wing is divided into N elements. For the i th element, located
at a distance ri from the wing base B having a cord ci and
width dri, the differential normal force is given by

¯dFi = dFix̂w =
(
C1(αi)

ρ
2

|V̄i|2cidri

)
x̂w, (2)

where V̄i = Vixx̂w + Vizẑw is the flow velocity vector (Viy

component does not contribute to the aerodynamic force),
C1(αi) is a coefficient of normal force which is a function
of angle of attack αi of the ith element and ρ is the density
of air. Based on a model by Walker [11], the rotational force
peaks are modeled by computing V̄i at a location ‘v’ along
the chord at each blade element as shown in Fig. 1D. Further
details about the aerodynamic model can be found in [5].

C. Computer Simulation

The dynamic equation (1) along with the aerodynamic
model given by (2) constitutes the complete model of the sys-
tem. The numerical simulation of this system after reaching
steady-state is shown in Fig. 2. The motion is qualitatively
similar to the insect wing motion [1]. The flapping motion is
nearly sinosoidal while the rotational motion is trapezoidal
and marked by overshoots after the wing flips. Note that
θr varies very little from θ ∗

r during the flapping phase due
to the presence of Kr3 term. The insect-like kinematics can
be described by a few parameters which allow variation in
kinematics without changing it qualitively. These are the
stroke amplitude ‘Θ f ’, the constant angle of attack α∗ =
π/2−θ ∗

r , the phase ‘φr’ between the flapping and rotational
motion and the duration of rotation ‘ΔT ’ which is a fraction
of wing beat time period ‘T ’ during which flip occurs [9].

Fig. 2. shows the numerical simulation of (1) after reaching steady-state.
Θ f ≈ 90o and θ ∗

r = 60o or α∗ = π/2−θ ∗
r = 30o.

III. OPTIMAL HOVERING KINEMATICS

We now determine the optimal set of kinematic param-
eters, described above, which maximize the aerodynamic
performance. We will then tune the thorax model to ob-
tain the optimal kinematics. In the past, experiments have
been conducted to determine the optimal kinematics using
dynamically scaled fruit-fly wings at a Reynolds number
range of 100-200 [9]. However, aerodynamic data of flapping
wings is not available in a Reynolds number (Re) range of
10,000 to 20,000, which is the expected operating range of
a hummingbird sized FWMAV. To characterize the optimal
kinematics at this Re, we conducted our own aerodynamic
tests using a robotic flapping wing device shown in Fig. 3.

The flapper provides the (θ f ,θr) motion. The force and
torque data from the sensor is filtered online using a first-
order filter and offline with a zero-phase delay low-pass
Butterworth filter with a cut-off frequency set to 15 times
the flapping frequency. The gravity and inertial loads are
computed online using Newton-Euler equations of the rigid
wing and subtracted from the sensor output to get the pure
aerodynamic loads. This data is in the wing frame Fw as
shown in Fig. 3 and transformed into the lift and drag
axes which are normal and parallel to the stroke-plane. We
used dSpace system for control of flapper motors and data
acquisition. To obtain dynamic scaling, the Reynolds number
‘Re’ for flapping wings [4] is matched between the flapper
wing and a 1/5th scale FWMAV wing. The cycle averaged
lift, drag and lift coefficient are defined as follows

L̄ =
1
T

∫ T

o
L(t)dt, D̄ =

1
T

∫ T

o
|D(t)|dt, CL =

L̄
0.5ρS2(π f Θ f )2 (3)



Fig. 3. shows the robotic flapper designed and fabricated at University of
Delaware. It is driven by independent servo motors and can generate (θ f ,θr)
wing motions. A six-axis sensor records the force/torque data generated by
the wing. This data is transformed into the wing frame f w(x̂w, ŷw, ẑw).

where L(t) and D(t) are time varying lift and drag forces,
f is the wing beat frequency in Hz, T = 1/ f is the cycle
period, S2 = 2∑N

i cidri is the second moment of wing area
[3] and ρ is the density of air. The criteria for aerodynamic
performance is high CL at a high L̄/D̄ ratio. Starting from
nominal kinematic parameters (Θ f = 30o, α∗ = 35o, φr ≡
0o, ΔT ≡ nominal), we vary each parameter in a sequence
of experiments to find the optimal kinematic parameters as
follows.

A. Optimal stroke amplitude Θ f

In the first experiment, Θ f is varied from 30o to 90o in
10o increments while keeping the product f Θ f constant.
This ensures constant Re and the denominator of CL. The
experimental results presented in Fig. 4 show an increase of
L̄/D̄ and CL with Θ f .

Fig. 4. The effect of varying Θ f on CL and L̄/D̄ ratio at Re = 10,263.

However, by manipulating rotational motion, aerodynamic
performance might be improved even for smaller amplitudes.
This leads us to the second experiment.

B. Optimal flip motion

In the second experiment, we fix Θ f at 90o while flip is
varied in two ways. (1) ΔT is varied from nominal to fast
and slow as shown in Fig. 5A and (2) for each ΔT , the phase
φr is varied from −30o (delayed flip) to 30o (advanced flip)
in 5o increments as shown in Fig. 5B.

Fig. 5. Effect of variation of flip duration ΔT and phase φ r on CL and
L̄/D̄ ratio at Re = 18,326.

The experimental results presented in Fig. 5C and D show
that advanced flip (φr > 0o) results in an increase of CL

as well as L̄/D̄. Maximum L̄/D̄ occurs at values of φr

between 0o and 20o while CL increases almost linearly with
φr. Furthermore, ΔT has very little effect on CL, however, the
nominal and fast flip durations result in an increase in L̄/D̄
compared to the slow flip case. Therefore, by manipulating
the flip motion, we are able to significantly improve L̄/D̄
and CL at Θ f = 90o compared to the data in Fig. 4.

C. Optimal angle of attack α ∗

In the above experiments, α∗ was maintained at 35o. In
this experiment, we fix Θ f = 90o and ΔT = nominal, while
α∗ is varied from 10o to 70o in 5o increments. The experi-
ment is repeated for five values of φr (−5o,0o,5o,10o,15o)
which includes the optimal range of φr found in the previous
experiment. The results again show that φr < 0o results in a
decrease of L̄/D̄ and CL.

Fig. 6. Effect of variation of α ∗ on CL and L̄/D̄ ratio at Re = 18,326

These results are similar to those obtained in [9]. Based on
the last two experiments, we see that maximum L̄/D̄ and CL

do not occur at the same parameter values and a compromise
must be made. A high CL is important for carrying payload,
whereas a high L̄/D̄ reduces aerodynamic power required
for a given payload. Based on the requirement for high L̄/D̄,



the optimal operating point is φ r ≈ 10o, and α∗ ≈ 20o. For
high CL, Θ f = 90o, φr = 30o and α∗ = 55o. For both cases,
Θ f = 90o and ΔT = nominal.

IV. TUNING THE THORAX MODEL

The parameters of the thorax model can now be related to
the optimal kinematic parameters in order to tune the model
for peak aerodynamic performance.

A. De-coupling flapping dynamics

The pattern of venation distribution in insect wings shifts
the center of mass near the leading edge or ŷw axis [2]. This
means Jx ≈ Jz = J and Jyz,Jy � J. The implicaiton of this can
be seen if we non-dimensionalize (1) by dividing with J and

scaling time by using τ = ωot, where ωo =
√

Kf 1
J . Notice

that the coefficient of θ̈ f in M(q) becomes one while other
terms are much smaller than one. Similarly, the coefficients
of terms in C(q, q̇) become negligible compared to one.
Therefore, flapping dynamics is decoupled from rotational
dynamics except for coupling in Q(q, q̇). If we assume that
the wing maintains optimal α ∗ during the flapping phase
and flips instantaneously (ΔT = 0) without actually rotating,
then aerodynamic model is greatly simplified and flapping
dynamics is decoupled and given by

Jθ̈ f = Kf 1(θe −θ f )+Kf 2(θe −θ f )3 −Caθ̇ |θ̇ | (4)

where Ca =C1(α∗)ρ
2 cos(α∗)∑N

i=1 r3
i cidri is the aerodynamic

damping coefficient which is a function of wing geome-
try and α∗. Therefore, flapping dynamics can be studied
independently, however, the rotational dynamics equation
remains unchanged in (1) and is highly dependent on flapping
dynamics. This result is obvious, since flip occurs passively
due to flapping. Based on the results of Fig. 4, maximum Θ f

is desirable. The frequency response (Θ f vs ωe) of (4) can
be generated numerically to determine the peak amplitude
Θ∗

f and ω∗
e at the peak amplitude. At (Θ∗

f ,ω∗
e ), we must

ensure that L̄≥W (W = weight of FWMAV) and the average
aerodynamic power P̄a is within the actuator output range.
If this is not satisfied, we change the parameters in (4) to
increase ω∗

e and Θ∗
f . For constant Ca, increase in stiffness

(Kf 1,Kf 2) increases ω∗
e while increase in J increases Θ∗

f and
decreases ω∗

e . The best way to increase J without increasing
the weight or other inertia parameters is to put a mass on
the tip of the wing at the leading edge. Some insects, in
particular, of the order odonata have a concentrated mass
called pterostigma located precisely in this location as shown
in Fig. 7. To verify the significance of pterostigma, we
conduct experiments on the actual mechanism in Section VI.

B. Optimal rotational dynamics

Once flapping dynamics given by (4) is tuned at (Θ∗
f ,

ω∗
e ), we can optimize rotational dynamics to maximize aero-

dynamic performance. For this purpose, we used numerical
optimization based on SQP algorithm available as f mincon
function in MATLAB. The optimization utilizes, the steady-
state solution of (4) (tuned at Θ∗

f = 90o at α∗ = 25o) along

Fig. 7. Figure showing the location of pterostigma on a dragonfly wing.

with the rotational dynamics equation in (1) to generate the
cycle averaged L̄ and L̄/D̄. The cost function is given by

f (Kr1,Kr2,δ Jy,δ Jyz, μr) = w1

(
1
L̄

)2

+w2

(
D̄
L̄

)2

, (5)

where w1, w2 are weighting coefficients. The cost function
is designed to maximize L̄ and L̄/D̄. The parameter δ Jy is
described as δ Jy = (Jy + ΔJy)/Jy, where ΔJy is the change
in Jy. An increase in Jy gives δ Jy > 1 while a decrease
gives δ Jy < 1. No change means δ Jy = 1. Similarly, for the
parameter δ Jyz. The cost function is subject to the following
constraints

−Kr1 < 0, −Kr2 < 0, −μr < 0, (6)

0.5−δJy < 0, δJy−2 < 0, 0.5−δJyz < 0, δJyz −2 < 0, (7)

where the constraints ensure that Kr1, Kr2, and μr remain
positive and δ Jy,δ Jyz are bounded between 0.5 and 2. The
quantitative results of optimization can be used to tune the
thorax model, however, we are interested in the effect of
optimal parameters on aerodynamic performace. Therefore,
we generated three rotational motions based on: (1) optimal
solution, (2) setting Kr1 = Kr2 = 0 but other parameters are
optimal and (3) Kr1 = Kr2 = 0 and original (non-optimal)
values of Jy and Jyz. These three kinematic patterns are used
in the robotic flapper to determine the CL and L̄/D̄. Figure
8 shows the three kinematics and experimental results.

Fig. 8. Experimental results showing the comparison of aerodynamic
performance for the three kinematic patterns.

These results clearly shows an increase in aerodynamic
performance in the optimal case. Stiffness results in advanced
flip compared to the other two cases. As shown in Fig. 5,
advanced flip improves aerodynamic performance. Similarly,
optimal inertia also results in advanced flip compared to non-
optimal case. The optimal solution gives δ Jy = 0.5. This
means less mass near the trailing edge of the wing. This



result clearly shows the importance of rotational stiffness and
proper inertia distribution in flapping wing aerodynamics.

V. THORAX BASED DESIGN

The model of insect thorax is used as a basis for the design
of FWMAV flapping mechanism. In Fig. 9, we present a
schematic of a design which does not resemble the insect
thorax but mimics its mechanics. In this design, the thorax
muscles are replaced by two four-bar linkages driven by a
common crank. The rocker is driven through an angle θe. The
flapping spring connects the wing base to the rocker and the
rotational spring connects the wing base to the rigid wing.
As the crank rotates by an angle θs, power is transmitted to
the wing through the flapping spring while flip is generated
passively as described by the dynamics of the thorax model.

Fig. 9. Schematic showing the working of a flapping mechanism based
on the thorax model.

A CAD model of the design is shown in Fig. 10A
shows the various components and the assembled wing. The
crank is driven by a micro DC motor via a two stage gear
reduction. Fig. 10B shows twist in flapping spring of the
actual mechanism as the wing is deflected manually. The
wing base acts as a bearing for the wing leading edge which
can revolve freely until α ∗ is reached. Rotation beyound α ∗
is prevented by a locking mechanism shown in Fig. 10C.
The rotational spring consists of a rod inserted into the wing
base parallel to the wing leading edge. As the wing rotates,
the parallel rod is deflected and acts as a rotational spring.
The wing is made of carbon rods and covered with Japanese
tissue. The pterostigma is a small brass tube which is press
fitted at the end of wing leading edge rod and is easily
removable. The entire wing assembly is mounted on top of
the rocker on a common axle and connected to the rocker
through elastic bands. When the wing rotates relative to the
rocker, the elastic bands are stretched and act as flapping
spring as shown in Fig. 10C. The link lengths of the four-
bar mechanism are optimized to achieve a sinusoidal motion
with a driving amplitude of Θ e = 30o with symmetry between
the left and right rocker motions.

VI. EXPERIMENTAL VALIDATION

A. Experimental setup

The key quantities to measure are the cycle average lift L̄
and aerodynamic power P̄a, stroke amplitude Θ f , and flap-
ping frequency ωe. The experimental setup used to measure
these quantities is shown in Fig. 11. The lift is measured by a
weight balance with a resolution of (0.01gmf). The flapping
frequency is measured by a stroboscope. To measure Θ f , we

Fig. 10. Figure shows the details of the design. A: CAD model showing
the various components, B: Twist in the elastic band flapping spring (actual
prototype). C: rotational spring and lock mechanism (actual prototype).

used laser pointers mounted perpendicular to the stroke plane
and the table. The pointers illuminate the leading edge of the
beating wing at the extremes of the stroke and the point of
light also falls on the table and is marked. The angle between
the two lines starting from the marked points to the wing
rotation axis is 2Θ f as shown in Fig. 11. This procedure can
be repeated over a range of flapping frequencies and allows
fairly accurate measurements of Θ f compared to expensive
vision system or encoders which can effect the mechanism
dynamics. The stiffness and α∗ are measured using custom
built tools as shown in Fig. 11 B, C. The inertia parameters
are determined from a CAD model of the wing assembly.

Fig. 11. A: Experimental setup comprising of a stroboscope, laser pointers
and a weight balance (0.01 gmf resolution). The schematic shows how Θ f is
measured using light projections. B & C: Custom built tools for measuring
and adjusting α ∗ and spring stiffness.

The micro DC motor is driven by a power source and the
voltage V and current I are measured through dspace board.
The aerodynamic power can be computed from

P̄a = VI− I2Rm −Bsθ̇ 2
s , (8)

where V I is the input power to the motor, I 2Rm is the loss
of power in motor windings, Bsθ̇ 2

s is the friction loss of the
entire mechanism excluding the wings.

B. Results

We investigated three cases using the same wing. In
case A, the wing has rotational stiffness but pterostigma
is not used. In case B, pterostigma is included. In case C,



pterostigma is removed as well as the rotational stiffness
by cutting the rotational spring rod. This allowed the wing
to rotate freely without stiffness upto α ∗. The frequency
response determined experimentally is shown in Fig. 12 for
the three cases along with the frequency response generated
by the thorax model using numerical simulation.

Fig. 12. Figure shows the frequency response of the mechanism in terms
of Θ f , L̄ and P̄a for three cases (plotted in rows). Case A: wing includes
rotational stiffness but no pterostigma, case B: same wing with pterostigma
and case C: same wing with no rotational stiffness and pterostigma.
Experimental data is also compared with the thorax model. In plot B1,
(Θ∗

f ,ω
∗
e ) is the point of peak stroke amplitude and frequency.

The experimental data matches very well with the thorax
model for cases A and B in terms of the shape of the curves
as well as the frequencies at which peak values of Θ f , L̄
and P̄a occur. Comparison of the plots for cases A and
B show that pterostigma increases Θ∗

f and L̄ and reduces
ω∗

e . However, P̄a also increases significantly compared to
case A and is more than what the thorax-model predicts as
shown in plot B3 in Fig. 12. The results of case C should
be compared to case A because the only difference is the
removal of rotational stiffness in case C. The plots show that
removing rotational stiffness results in significant reduction
of L̄ (compare plots A2 and C2) and significant increase
in P̄a (compare plots A3 and C3). Furthermore, the stroke
amplitude is much larger compared to case A (compare plots
A1 and C1). However, even with large Θ∗

f , the aerodynamic
performance is poor compared to case A. This clearly shows
the importance of rotational stiffness in flapping wing flight.

The maximum lift generated is 4.15 g f at roughly 10 Hz
using the pterostigma as shown in plot B2. The aerodynamic
power required is 0.24 W which is only 16% of the maximum
power output (1.5 W) of the motor. The actual FWMAV will
require atleast 10 gf of lift per wing. Lift can be increased by
increasing flapping frequencies and using α ∗ for maximum
CL. The required aerodynamic power will also increase,
however, we belive that the current motor is powerful enough
to cope with the increased power requirements. Furthermore,
tiny brushless motors are now available which are much
lighter and with a much higher maximum power output.

VII. CONCLUSIONS

In this paper, a 2-DOF model of insect thorax is presented.
Computer simulations of the thorax model show insect-like
wing kinematics. We have identified the parameters which
qualitatively describe the kinematics. Aerodynamic tests re-
vealed the optimal values of these kinematic parameters for
peak aerodynamic performance. We also showed that due
to the special nature of the inertia distribution, the flapping
dynamics can be decoupled from the rotational dynamics
while rotational dynamics is highly dependent on flapping
dynamics. Therefore, the parameters of the rotational dynam-
ics can only be optimized once the parameters of the flapping
dynamics have been found. Using numerical optimization,
we found the optimal parameters of the rotational dynamics.
Analysis of thorax-model also revealed the importance of
rotational stiffness and pterostigma in insect wings. Finally,
based on the thorax-model, we presented a design of a flap-
ping mechanism. Experimental evaluation confirmed the role
played by rotational stiffness and pterostigma in improving
aerodynamic performance. In the future, more tests will be
carried out leading to the first prototype FWMAV.

VIII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the funding of Na-
tional Science Foundation (NSF) in support of this work.

REFERENCES

[1] Altshuler et al, ”Short Amplitude high frequency wing strokes deter-
mine the aerodynamics of honeybee flight”. PNAS, vol. 102, no. 50
1821318218; December 13, 2005

[2] Robert Dudley.“The biomechanics of insect flight, form, function and
evolution.” Princeton University Press; 2002

[3] Ellington, C. P. (1984). ”The aerodynamics of hovering insect flight.
I-V”. Phil. Trans. Royal Society of London B 305, 115.

[4] Ellington, C. P. (1999). ”The novel aerodynamics of insect flight:
applications to micro-air vehicles”. J. Exp. Biol. 202, 34393448.

[5] Khan, Z. A., Agrawal, S. K., 2005.“Wing force and moment character-
ization of flapping wings for micro air vehicle application”. American
Control conference; 2005

[6] Raney, D. L., Slominski, E. C. ”Mechanization and Control concepts
for Biologically inspired Micro aerial vehicles”. AIAA guidance,
navigation and control conference.; 2003

[7] Zbikowski, R., Galinski, C., Pedersen, C. B., Four-Bar Linkage
Mechanism for insect-like Flapping Wings in Hover: Concept and an
Outline of its Realizations. Journal of mechanical design, July 2005,
Vol 127.

[8] Banala, S. K, Agrawal, S. K., Design and Optimization of a Mech-
anism for Out-of-plane Insect Wing-like Motion With Twist. Journal
of mechanical design, July 2005, Vol 127.

[9] Sane, S. P and Dickinson, M. H. ”The control of flight force by
a Flapping Wing: Lift and Drag Production”. J. Exp. Biol. 204,
26072626; 2001

[10] Usherwood, J. R. and Ellington, C. P. ”The aerodynamics of revolving
wings. I”. J. Exp. Biol. 205, 15471564.; 2002

[11] Walker, J. A., ”Rotational lift: something different or more of the
same?”. Journal of Experimental Biology, 205, 3783-3792; 2002.

[12] Wang, Z. J. ”Passive wing pitch reversal in insect flight”. J. Fluid
Mech, vol 591, pp. 321-337.; 2007

[13] Wood, R. J. ”The First Takeoff of a Biologically Inspired At-Scale
Robotic Insect”. IEEE TRANSACTIONS ON ROBOTICS, VOL. 24,
NO. 2, APRIL 2008

[14] Wootton, R. J, ”Functional Morphology of insect wings”. Annu. Rev.
Entomol. 37:113-40.; 1992


