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Abstract— Current changes in aging demographics poses new
challenges: people require to keep their quality of life even after
circumstances that threatened their movement and function.
This increases the demand for new physical rehabilitation
facilities that go beyond the traditional patient-therapist, one-
to-one rehabilitation sessions. Two promising solutions rely on
virtual reality and on the development of autonomous active
orthoses, or exoskeletons. Whatever is the chosen approach,
there is a requirement for a robust human-machine interface
for the control, able to understand patient’s intention and to
produce an immediate activation of the device.

This paper presents a biomechanical model, a possible
solution able to predict joint torque from the surface elec-
tromyography signals emitted by muscles during their acti-
vation. The main objective of the research is to investigate
the benefits and efficacy of this model and to lay down the
basis of our current research, whose main goal is to make
possible a rehabilitation process either with active orthoses or
virtual reality. Experiments involving all the steps of our model
demonstrate the viability and effectiveness of our approach.

I. INTRODUCTION

Aging societies pose new challenges, creating new needs

and aspirations. People desire to have a high quality of life

and the possibility to easily create social interactions even

after circumstances that threatened their movement and func-

tion, such as aging, injury, disease or environmental factors.

To restore movement and functional abilities it is central the

possibility to have access to physical rehabilitation facilities,

which are quite expensive as they still continuously require

the knowledge and skills of a physical therapist.

Research is currently looking for alternative solutions,

mainly in the fields of virtual reality [1] and autonomous

active orthoses [2]. Virtual reality (VR) technologies have the

potential to become of primarily importance in rehabilitation,

due to the several strengths underlying its use. The main

advantage is the availability of a controlled environment,

where the user’s feedback and the training can be manip-

ulated based on patient conditions to create a personalized

rehabilitation experience. Furthermore, doing exercises in

VR helps motivation, augmenting the operator’s attention [3].

Another research opportunity is the integration of human

and exoskeleton or orthoses to develop a new generation
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of assisting technologies [2]. With respect to rehabilitation,

the goal is to have active technologies, still under the final

control of the user, to both support, amplifying human

movement, and rehabilitate through active training.

Whatever the chosen research approach is, there is a

need of an interface between the patient and the real or

virtual device: as soon as the patient’s intention is raised, the

interface should activate, accordingly, the device. A possible,

promising solution utilizes surface electromyography (EMG)

signals emitted by muscles during their activation. During

the execution of the movement, these signals are interpreted

and used as input for the control algorithms. Together with a

simple user interface (the execution of the movement) EMG

signals have another advantage, i.e. a delay between the

activation and the actual movement. This time delay, usually

in the range of 26-131 ms [4], can be used to provide a

run-time actuation for the supporting device.

The main problem with surface EMG signals is that they

are not stationary and not linear, therefore they require the

development of a sophisticated model for their interpretation.

Promising and complete models are already available in

literature [5], [6] but their complexity relegate them to offline

computation. Proposed models, running within the EMG

electromechanical delay, are often based on classification

algorithms. Only recently, few researchers have developed

biologically-motivated models [7], [8]. In [9], the authors

present a model of the human muscle able to predict joint

torques for the upper limb as a function of the joint kine-

matics and neural activation level. Another effective research

has been presented in [10]. The EMG signals are used as

input for a simplified biomechanical model able to derive

the desired action of the operator and control an orthoses for

the knee joint.

Starting from this research, we present a biomechanical

model based on EMG signals we have developed for the

control of lower limb devices. Although the potential benefits

of rehabilitation for both upper and lower extremity, we have

decided to focus our efforts on the human leg because of

the lack of research when compared with the advancements

on upper extremity exoskeletons. While the latter have been

studied for more than ten years, only recently particular

attention has been put on lower extremity exoskeletons and

human gait support despite the potentially large number of

consumers [10]–[13].

The model is at the basis of our current research, whose

main goal is to make possible the analysis and immediate

feedback to subjects, and physical therapists, to support

rehabilitation processes either in VR or through active or-





where fAi(l̃
m
i ) and fPi(l̃

m
i ) are the active and passive force

length curves as a function of the normalized muscle fiber

length l̃mi . This last quantity is normalized with respect to

the optimal muscle fiber length, lm
0i which is the length at

which the muscle produces maximal force, i.e., l̃mi =
lmi
lm
0i

.

Finally, Fm
0i denotes the maximum muscle force at optimal

fiber length.

3) Musculoskeletal Geometry: A lower limb anatomical

model was created based on the model proposed by S.L.

Delp [17] and extended by Lloyd and Buchanan [14]. The

muscles selected for this study are represented as line seg-

ments that wrap around bones and other muscles depending

on the hip and knee angle. Lower limb joint kinematics data

(hip and knee joint angles) is used as input. The geometry

model is then able to determine individual muscle-tendon

lengths lmt
i and muscle fibers length lmi (Fig. 1).

We assumed the tendon is stiff and the muscle-tendon

length change is only due to muscle fibers. Normalized fiber

length can then be computed with respect to the tendon

length:

l̃mi =
lmt
i − st

i l̂
t
si

st
i l̂

t
si

(2)

where l̂tsi is the tendon slack length for the i-th muscle

according to literature. This quantity defines the length of the

tendon when no tension is applied. From our assumptions on

tendon stiffness it follows that the length of the tendon can

be approximated with l̂tsi. Parameter st
i represents the tendon

slack length scale and plays an important role for tuning the

model to the actual subject’s musculoskeletal geometry.

Muscle moment arms are also computed by the model as

a function of the joint angle θ:

ri(θ) =
∂lmt

i (θ)

∂θ
(3)

For biarticular muscles (muscles that cross two joints) such

as rectus femoris and all the flexor muscles included in our

model, the moment arm is a function of both hip and knee

angles. Muscle moment arms are really important in the

model as they influence a great number of factors including:

the estimated torque resulting at the knee joint and the

individual muscle forces computed by solving the force

sharing problem (Sec. II-A.4 and IV-A.3).

4) Joint Torque Computation: Performing the previous

computations for every muscle i with 1 < i < N yields

for the resulting knee torque: TEMG =
∑N

i=1
riF

m
i , where

riF
m
i represents the individual torque generated by the

muscle i, (TEMG
i ).

III. PARAMETERS SELECTION

Several parameters characterize the proposed model. They

have to be properly adjusted to assure adaptation to the

current subject’s anatomical structure and physiological con-

dition. The more parameters are allowed to vary, the better

the fit between the estimated joint torque and the measured

one will be. However, models that have many parameters

provide highly accurate prediction only within a few time

steps with the need of reevaluate them at each time in-

stant [16]. Therefore, parameters to calibrate have to be

accurately selected. Furthermore, the number of parameters

that are allowed to vary, strongly influences the number of

sensors the model needs. For the design of a highly predictive

system that can also be easily applied to any subject with

reasonable preparation time this number has to be kept low.

For each muscle i, we selected the following parameters:

(1) maximal muscle force at optimal fiber length, Fm
0,i, (2)

EMG-to-Force shape factor, Ai, (3) tendon slack length

scale, st
i. The last one is only related to the musculoskeletal

geometry, therefore it is a constant for the human being and

requires to be calibrated only once for every operator. The

remaining parameters are highly EMG-dependent and need

to be re-calibrated at each experimental session for optimal

performances. All factors that are out of this list and that are

not derived from the formulas presented in this paper are

taken directly from literature.

IV. CALIBRATION

We implemented two different types of calibration. The

first one (Isometric Calibration) involves only isometric

trials. This procedure was proved to be quite laborious in

terms of subject’s preparation and instrumentation setup.

Furthermore, muscles such as vastus lateralis and vastus

medialis did not show significant activity. Therefore, we

conceived an alternative approach (Dynamic Calibration)

based on a more intuitive and faster procedure suitable for

dynamic movements. This way we assured a greater activity

of the vasti.

A. Isometric Calibration

The reference values for the isometric calibration are

the knee angle and torque measured during isometric con-

tractions. It is noteworthy pointing out that the following

procedure is completely general and can be applied to any

joint. This statement follows by the fact that we adopted the

general calibration approach described in [10].

1) Calibration Setup: The operator is sitting on a chair

with the thigh comfortably supported and the shank secured

into a special structure (MVC-structure) to avoid any knee

flexo-extension movements. The structure is designed to

touch the ground only in four points (Fig. 2) and to avoid

any contact between the subject’s leg and the floor.

The knee can be secured at any arbitrary angle whereas

the hip is kept at 90◦ (Fig. 2-a). Both pelvis and thigh are

strapped up to the chair so that no undesired movements can

occur during the calibration procedure. The MVC-structure

is placed above two force plates that measure only the weight

of the leg and of the blocking structure when the muscles are

relaxed. In the correspondence of such a weight, the force

plates are set to measure 0N .

During each trial the operator is asked to extend or flex

the knee with maximum force. The static equilibrium of the

system (MVC-structure and leg) allows to derive the torque

at the knee joint. Depending on the nature of the movement

(flexion or extension), two opposite forces are generated
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Fig. 3: Muscle activation functions behave differently for the same level of ũ over different trials (angles) when st is not

calibrated: (a) vastus lateralis (st not calibrated), (b) vastus lateralis (st calibrated), (c) biceps femoris (st not calibrated),

(d) biceps femoris (st calibrated). The muscle force behaviour after calibration is consistent with respect to the same level

of ũ: (e) vastus medialis (st not calibrated), (f) vastus medialis (st calibrated), (g) semitendinosus (st not calibrated), (h)

semitendinosus (st calibrated).

5) EMG-to-Force Calibration (Fm
0

, A): The optimized

EMG-dependent parameters Fm
0

and A are computed by

curve fitting the trend of the muscle force Fm
R computed

from Eq. 4 for all muscles and trials. The error function to

be optimized for the i-th muscle is:

Ei(F
m
0i , Ai) =

K∑

k=1

Nh∑

h=1

(
F̂m

hk,i
− Fm

R,hk,i

)2

(7)

where F̂m
hk,i

is calculated from Eq. 1. We assumed that

−5 < A < 0 and 100N < Fm
0

< 2500N , [15]. After the

EMG-parameter calibration is done, the geometry calibration

is performed once again using the optimized value Fm
0

to

refine the torque estimation. Figure 4 shows the optimization

function correctly fitting the geometry-calibrated muscle

activation-force relationship (also see Eq. 7 and 1).

B. Dynamic Calibration

The dynamic calibration procedure has been applied to

sit-to-stand movements.

The subject is initially sitting on a chair with both feet on

a ground force plate and has to slowly get up from the chair

without supporting himself with his hands. A set of markers

are placed on the pelvis and on the right leg so that the limb

trajectories in the sagittal plane can be determined (Fig. 5-a).

Reference values for hip and knee angles (H , K) and knee

torque (TR) are derived from an inverse dynamic model we

implemented using the Smart Analyzer software [19]. The

model is developed according to the one presented in [20].

The kinematics data is derived from 3D marker positions

while joint angles and force values on the force plates allow

to compute the torques at each joint. This is a recursive
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Fig. 4: Parameters A and Fm
0

are tuned to have the best

fit of the optimization function with respect to the calibrated

activation-force relationship (Eq. 5). The other muscles show

behavior similar to the one shown for the biceps femoris.

process that starts from the computation of the ankle torque

and continues upwards with the calculation of the knee and

hip joint torques (Fig. 5-b). Only A and Fm
0

are tuned for

all muscles while the geometry parameter st is not included.

In dynamic conditions it is difficult indeed to apply the

optimization based on Eq. 6. The reason is that we need

to minimize the discrepancy between the level of muscle

activation, relative to a certain normalized EMG value, for

different angles. This can be easily done by performing

several isometric trials for different angles as explained

in section IV-A.4. Dynamic movements do not allow to

observe the muscle activation trend at a specific angle for

different values of normalized EMG. Further research may



(a) (b)

Fig. 5: (a) Set of the anatomical points on the human lower

limb where the markers are placed. (b) Schematic view of the

inverse dynamic algorithm. Initial values of the ground force

f0 and the associated torque T0 allow the computation of the

ankle torque. Iteratively knee and hip torques are derived.

help understand how to get such information in dynamic con-

ditions. A curve fitting with the data computed by the inverse

dynamic model is performed for the calibration of the EMG-

dependent parameters: E(Fm
0

, A) =
∑

j

(
TR,j − TEMG

j

)2

,

where TEMG
j is the torque estimated from the EMG-driven

biomechanical model for the j-th muscle. Although, st could

have been included in the curve fitting equation we preferred

to avoid it. The inclusion of a further parameter would have

decreased the prediction capacity of our model making it

dependable on too many factors [16]. Experiments showed

that our model has been able to correctly predict new sit-

to-stand movements over a large amount of time. Since st

has to be calibrated only once for a specific subject, we used

the values we obtained from the isometric calibration. When

such data was not available we used the ones taken from

literature [15].

V. EXPERIMENTS

The experiments were performed at the Gait Analysis

Laboratory of the Department of Information Engineering

(University of Padova) on a 27 year old male subject with

1.83m height and 75Kg weight. A 6-camera motion track

system and two force plates [19] were used to collect joint

angles, ground forces and joint torques. A multichannel

EMG acquisition system, equipped with wireless disposable

bipolar electrodes, was used for the acquisition of the neural

command. Angle data was sampled at 60Hz whereas torques

and force data was sampled at 960Hz. EMG signals were

sampled at 1kHz. All data was initially low pass filtered with

a second order Butterworth filter with a cut off frequency of

6Hz. The EMG-signals were further processed according to

the procedure described in Sec. II-A.

This section provides evidence of the capability of our

model to correctly predict knee joint moments in both iso-

metric and dynamic conditions. The experiments also prove
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Fig. 6: The estimated knee torque is superimposed to the

measured one. (a) Isometric extension trial at −67◦. (b)

Isometric flexion trial at −44◦.

the proper model behavior in dealing with new data, not used

during calibration.

A. Isometric Trials

Isometric calibration was performed on the 7 trials listed

in Sec. IV-A. We then ran the model with the optimized

parameters on data from each trial. Fig. 6 shows the behavior

of the system on two single tests. Our EMG-driven model

correctly estimated the torque generated at the knee and

produced a signal that resembled the reference one through-

out the experiments. Some discrepancies between reference

and simulated torques were however observable. Those were

certainly due to the approach we used for measuring the

reference knee torque (Fig. 2). More precisely, the moment

arm for the ground forces, F0 and F1 were computed with

respect to the lines of action that go from the point K

to the contact points P0 and P1 (Fig. 2). Those lines of

action, however, might not always be necessarily related to

the forces F0 and F1. Furthermore, the subject’s thigh was

found to be always applying an undesired force on the plate

P0. This fact introduced an additional external force that

was not modeled.

B. Sit-to-Stand Movement

Calibration was performed on a complete sit-to-stand

movement of the duration of approximately five seconds.

Data was collected following the approach adopted for the

isometric calibration (Sec. IV-A.2). Data collection pro-

cedure starts when the subject does not touch the chair

anymore, at a knee extension of approximately 10◦. This

ensures that there is no alteration on the measured torque

due to undesired external forces. After optimized values for

A and Fm
0

are obtained for every muscle, a new session of

data collection is performed on a new trial of 60 seconds

including eleven sit-to-stand movements. The collected data

is fed into the EMG-driven biomechanical model and the

estimated EMG-based knee torque is compared with the one

measured by the inverse dynamic system. Fig. 7-a shows

good correlation of the data between the reference torque

and the one estimated by our model. Fig. 7-b shows that

the importance of the geometry parameter (st) for the esti-

mation accuracy. The low correlation between reference and

estimated data is clear. Fig. 7-c demonstrates the capability
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Fig. 7: Reference knee torque is compared with the estimated one: (a) st obtained from isometric calibration, (b) st not

calibrated, (c) estimated muscle forces (st from isometric calibration).

of our model to estimate individual muscle forces. As we

expected, the contribution of the vasti was predominant

at the knee joint. The remaining muscles are biarticular

and therefore distributed their contributions more uniformly

between hip and knee. Flexor muscles were only active with

low intensity.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed a biologically-motivated model to

estimate knee torque from EMG signals in both isometric and

dynamic conditions. Attention has been also devoted to the

run time performance of the current implementation which

is able to execute within the limit of time allowed by EMG

electromechanical delay. The study has also shown the influ-

ence of the calibration process of muscoskeletal and EMG-

dependent parameters on the prediction capabilities of the

model. Finally, we demonstrated that reducing the calibration

to an optimized subset of all the possible parameters can still

result in an accurate model while reducing the execution

time.

In our future work, we are planning to focus on the

improvement of the dynamic calibration of parameters. This

calibration of the whole set of chosen parameters, including

st will allow the exoskeleton or VR model to continuously

adapt to the varying conditions of user and EMG sensors.

In the meanwhile, we have already started the integration of

the model in the control of active orthoses and a VR model

already developed in a previous research [21].
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