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ABSTRACT

This paper presents a new 3D object representation called a
modified exoskeleton (mES) which is another type of skele-
ton that is more stable and less sensitive to rotation and
noise than the conventional skeletons. The mES preserves
significant characteristics about an object, that are meaning-
ful for object recognition and reconstruction, as the skeleton
does. Then a fast and reliable matching algorithm for recog-
nition and classification system which can identify and clas-
sify an observed object is introduced. The main advantage
of our matching algorithm is that it can recognize the ob-
served 3D object regardless of its orientation and noise. The
first experiment was conducted on a set of artificial 3D ob-
jects and the average recognition rate of 92.60% based on
the mES is achieved. The second experiment was tested on
the classification of volumetric lung tumor data sets and the
obtained results are promising.

1. INTRODUCTION

The task of object recognition is essential for biological vi-
sual systems and robotics. Due to modern technology, large
3D volumetric data sets become commonly used in these
fields. In object recognition, comparing an observed 3D ob-
ject with known objects (here called models) in a database
based on measurable characteristics known as geometry (or
shape) is one of the most widely used techniques. Skeleton
is an effective object representation for shape recognition,
visualization, and reconstruction [2, 3]. It is, however, very
sensitive to subtle shape changes caused by noise. Exis-
tence of a small hole or cavity causes extreme difference in
skeleton structure. Our proposed mES combines the basic
concept of the original exoskeleton introduced by J. Prewitt
[5] with the rotation invariant property of a symmetrical ob-
ject to makes it more stable and less sensitive to rotation and
noise disturbances. Once, the observed object and the mod-
els are reduced to their compact shape representations, the
tasks of the recognition system is to identify a model which
corresponds to the observed object in the matching process.

The major contributions of this paper are to propose the
3D mES that alleviates deformations caused by rotation

and noise and to introduced an effective recognition sys-
tem for 3D objects whose matching results are independent
of the position and orientation of the observed object. The
definition of themES for 3D objects is described in Section
2. The recognition system is presented in Section 3. Sev-
eral experiments and their results are discussed in Section 4.
The summary and conclusions are presented in Section 5.

2. MODIFIED EXOSKELETON

The mES is analogous to the skeleton, except that we do
not extract the skeleton directly from a 3D object. Instead
we generate a symmetrical background such as a sphere
around the object and then extract the skeleton from this
spherical background, and the radius of the sphere can be
calculated from

rs = max
(l;m;n)

fd((lg;mg ; ng); (l;m; n))g+ "; (1)

where (lg;mg ; ng) is the centroid, (l;m; n) is any voxel on
the boundary of the object, d(:; :) is the Euclidean distance
between two voxels, and " is a constant value added to en-
sure that the sphere covers the original object thoroughly.

Definition Let X = f(x; y; z)g be a 3D object in a bi-
nary image F , and C = f(x; y; z)g be the intersection of �X
and a sphere that circumscribes the object X as shown in
Figure 1. The mES is defined as a locus of voxels of C,
or a skeleton of C, whose distance to any voxel of �C is the
shortest, whereas none of its neighbors has greater distance
value. The mES and its exoskeleton function mesf can be
expressed as

mES(X) = f(x; y; z)j(x; y; z) 2 C;

D(x; y; z) = min
(l;m;n)2 �C

(d((x; y; z); (l;m; n)));

D(x; y; z) � max
(p;q;r)2N(x;y;z)

(D(p; q; r))g

mesf(x; y; z) = fD(x; y; z)j(x; y; z) 2 mES(X)g



where d((x; y; z); (l;m; n)) represents the Euclidean dis-
tance between voxels (x; y; z) and (l;m; n), and N(x; y; z)
is a set of neighbors of (x,y,z). The actual algorithm to ex-
tract the skeleton of C is presented in [4].

Fig. 1. Illustration of an object embedded in a spherical
background (Cross section of 3D image).

The typical example in 3D case in which the skeleton
and the mES of an ideal sphere and a sphere with a small
hole and a tiny crack are shown in Figure 2. For better vi-
sualization, only the central parts of the original object and
the deformed object are segmented and displayed.

(a)An original sphere(left), a skeleton(middle), a mES(right).

(b) A deformed sphere(left), a skeleton(middle), a mES(right).

Fig. 2. Central slides of an original sphere and its deformed
version ( segmented from the 3D objects).

The advantage of the proposed mES is that it is robust
against noise disturbances and rotation, and the reasons are
as follows: (1) The main body of conventional skeletons
concentrate , in general, around the center of gravity of an
object where the skeleton function values are large. The
mES, on the contrary, disperses around the object (see Fig-
ure 2(a)). (2) The effects of noise and/or rotation spread
throughout the entire skeleton and the values of the skeleton
function are also influenced in a wide range. Not like in the
case of the mES, the extent of noise disturbance and/or ro-
tation have merely local effect to parts of the mES nearby
the deformed parts and the variation of the mesf is rela-
tively small (see Figure 2(b)).

3. MATCHING ALGORITHM

To ensure scale invariance, a scaling factor � is obtained
from the ratio of specified lengths which in our case are the
longest distances from the boundary voxels to the centroids
of the objects. This longest distance is actually equal to the
radius of the sphere when " is equal to zero, and thus, the
scaling factor is computed by:

� =
rs1
rs2i

; (2)

where rs1 denotes the radius of the spherical background of
the object and rs2i denotes that of the model i.

In the case of the mES, the matching algorithm, ex-
tended from 2D version in [1], searches for the local simil-
itudes between the two mESs by matching each voxel in
the object mES with its nearest one in the model mES.
In this process, the mesf is also taken into consideration
as a weight function. When matching voxels between two
mESs that represent similar components, theirmesfs should
be similar. On the other hand, these values should be dif-
ferent if they represent different components. The distance
between voxels and the difference between their mesfs are
accumulated and used to computed the similarity measure
E1 with respect to the object. Then, each voxel in the model
mES is matched with its nearest one in the object mES,
and the similarity measure E2 with respect to the model i
is computed. The similarity measure E, which provides a
mean for determining the overall similarity, can be calcu-
lated from the following equations:

E = min
a
fE1(a) +E2i(a)g (3)

E1(a) = f
X
u

X
v

X
w

sd1(u; v; w)g=M1 (4)

E2i(a) = f
X
x

X
y

X
z

sd2(x; y; z)g=M2i (5)

sd1 =
p
(x0 � au)2 + (y0 � av)2 + (z0 � aw)2+

fmesf2i(x
0; y0; z0)� a(mesf1(u; v; w))g2

sd2 =
p
(x� au0)2 + (y � av0)2 + (z � aw0)2+

fmesf2i(x; y; z)� a(mesf1(u0; v0; w0))g2

where (x; y; z), (x0; y0; z0), (u; v; w), (u0; v0; w0) are voxels
in the two mESs, a is a scaling range within � � 1:1�15 �
a � � � 1:115, and M1, M2i are the numbers of voxels in
mES1 and mES2i , respectively. This matching algorithm
then recognizes an object as a model whose similarity mea-
sure E is minimal.



4. EXPERIMENTAL RESULTS

Our experiments were conducted on a set of several 3D arti-
ficial binary objects in the image of size 80 x 80 x 60 and a
set of nine volumetric lung tumor data sets segmented from
CT images: two benign and seven malignant. The CT data
have a resolution of 512 x 512, where the interval between
voxels is 0.3-0.4 mm. Example of artificial objects and tu-
mor data are shown in Figure 3, and Figure 4.

The robustness of the mES was compared against that
of the skeleton using our matching algorithm. The first ex-
periment on matching between different shapes was per-
formed on a set of artificial objects. From the experimental
results, it can be verified that most of the matching results
give almost the same order of similarity. In the next session,
we evaluate each performance quantitatively.

Our main concern is to show how efficient the mES is
when the observed object is distorted by noise or rotation.
Thus, in the second experiment the object was rotated in
every 5o steps around the three coordinate axes in the range
�90o � �x; �y; �z � 90o, thus 36 rotated versions were pro-
duced. The effect of rotation on the mES and the similarity
E was evaluated using the relative dispersions or coefficient
of variations (CV ).

The coefficient of variation expresses the variation of
the throughput as a percentage of the mean and can be cal-
culated as follows:

CV =

�
STDEV

mean

�
� 100 =

�
�

�

�
� 100: (6)

where � and � are the mean and the standard deviation
of the similarity values E between each object and its ro-
tated versions, respectively. The experimental results in Ta-
ble 1 indicate that most of the relative dispersions of the
exoskeleton-based method is lower than those of the skeleton-
based method which means that the mES is more stable
with respect to rotation.

Besides, the relative distance is also used to evaluate the
effectiveness of the mES. The relative distance can be cal-
culated as follows:

Relative distance(RD) = j�1 � �2j=�; (7)

� = (�1 + �2)=2

where �1, �1 are the mean and the standard deviation of
the similarity measures between rotated versions and other
models in the database, �2, �2 are the mean and the stan-
dard deviation of the similarity measures between rotated
versions and their original objects. The relative distance of
good representation should be large. The relative distance
of each objects is shown in Table 1. It shows that most
of the relative distances derived from the exoskeleton-based

method are larger than those derived from the skeleton-based
method which indicates that the mES of each rotated ver-
sion is more similar to its original than other models, and
these statistical results are also confirmed by the recogni-
tion rates shown in Table 2.

Another problem with 3D skeletons arises when the ob-
served object contains cavities or tunnels. The skeleton
of an object with internal noise, such as cavities or tun-
nels, could differ completely from the original skeleton. In
the last experiment on the effect of noise, each object was
distorted by two kinds of noise, namely internal noise and
boundary noise. For internal noise, noise was added to an
object in arbitrary positions, and 15 noisy versions were
generated for each object. Next boundary noise was added
to an object by randomly converting the boundary voxels of
the object to background voxels and 15 deformed versions
were generated for each object. Each noisy object was then
compared with the models. The experimental results in Ta-
ble 2 indicate that the mES gives better recognition rate
when dealing with noise disturbance.

In the preliminary stage, we also apply our method to
classifiy real volumetric images of lung tumors segmented
from CT images. In our experiment, a tumor is classified
as either benign or malignant by the simialrity measure on
their mESs. The initial prototypes of these two classes are
selected from a pair of the tumors whose similarity measure
is maximum, then each tumor is classified by using the k-
clustering algorithm with the sum-of-squares of the similar-
ity measure as the cost function and k = 1. To evaluate the
classification results obtained from using mES, we com-
pared them with those obtained from the skeletons, and the
results indicate one misclassification for the mES-based
method and two missclassifications for the skeleton-based
method.

5. CONCLUSION

A binary object representation called the modified exoskele-
ton mES and a matching algorithms for 3D shape recog-
nition are proposed in this paper. The main features of the
mES is the integration of the original exoskeleton concept
with the rotation invariant property of symmetrical object
and the skeleton function to alleviate distortation problem
due to rotation and noise. The average recognition rate
of the mES-based method for artificial objects is 92.6%
whereas that of the skeleton-based method is 84.7% which
indicates an improvement of 7.90%. For real images, the
similarity measure based on the mES is used to classify the
lung tumors. We obtained the recognition rate of 89% for
the mES-based method compared to 78% for the skeleton-
based method, and the advantage of using the mES in clas-
sifying the tumor is that it is less susceptible to noise and
the orientation of the tumor than the skeleton.
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(a) A cube (b) A letter ’o’ (c) A letter ’d’

Fig. 3. Example 3D binary objects in a database

Table 1. Variation of matching results and relative dis-
tance between each object and its rotated versions based
on the skeleton and the mES.

skeleton mES (� = 2)
Object CV RD CV RD

Box 65.92 1.28 45.14 2.01

Ring 88.42 0.93 77.97 1.70

d 89.91 0.96 76.35 2.47

Cylinder 81.46 1.37 73.29 1.82

Sphere 68.33 3.98 54.89 1.89

Cross 75.76 0.90 75.28 1.49

E 78.59 1.21 74.00 1.93

U 79.17 0.94 65.44 2.05

Ribbon 83.12 0.99 81.63 2.97

average 78.96 1.40 69.33 2.04

Table 2. Recognition rates(%) between the skeleton-
based and the exoskeleton-based (� = 2) methods on rota-
tion and noise disturbances.

Rotated version Noisy version Total

Object S mES S mES S mES
Box 0 0 73.3 80.0 87.9 90.9

Ring 63.9 69.4 93.3 90.0 77.3 78.8

d 72.2 97.2 96.7 76.7 83.3 87.9

Cylinder 0 0 0 0 0 0

Sphere 0 0 6.7 0 57.6 0

Cross 91.7 88.9 93.3 96.7 92.4 92.4

E 94.4 97.2 0 0 97.0 98.5

U 75.0 0 96.7 0 84.8 0

Ribbon 83.3 86.1 83.3 83.3 81.8 84.8

average 86.7 93.2 82.6 91.9 84.7 92.6
(Note: S = Skeleton)

(a)A malignant tumor(left), a skeleton(middle), a mES(right).

(b) A benign tumor(left), a skeleton(middle), a mES(right).

Fig. 4. The original lung tumors with their skeletons and
mESs.


