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Abstract—Coupling the human upper limbs with robotic
devices is gaining increasing attention in the last decade,
due to the emerging applications in orthotics, prosthetics and
rehabilitation devices. In the cases of every-day life tasks,
force exertion and generally interaction with the environment
is absolutely critical. Therefore, the decoding of the user’s
force exertion intention is important for the robust control
of orthotic robots (e.g. arm exoskeletons). In this paper, the
human arm manipulability is analyzed and its effect on the
recruitment of the musculo-skeletal system is explored. It
was found that the recruitment and activation of muscles
is strongly affected by arm manipulability. Based on this
finding, a decoding method is built in order to estimate force
exerted in the three-dimensional (3D) task space from surface
ElectroMyoGraphic (EMG) signals, recorded from muscles of
the arm. The method is using the manipulability information
for the given force task. Experimental results were verified in
various arm configurations with two subjects.

I. INTRODUCTION
Coupling the human upper limb with robotic devices is

gaining increasing attention in the last decade, due to the
emerging applications in orthotics, prosthetics and rehabili-
tation devices. In these applications, the devices are worn
by the subjects, who can either use them for executing
demanding tasks (i.e. power augmentation) or for supporting
them during the execution of every-day life tasks in cases
of subjects with motor impairments. Interaction with the
environment is however critical, and in most cases it entails
the exertion of force to the environment, transmitted through
the worn device. Therefore, it is necessary to be able to infer
the user’s intention in terms of force exertion, in order to be
able to control the robotic device robustly and safely.
Decoding the intention of force exertion has been realized

mainly using surface ElectroMyoGraphic (EMG) signals
from the arm muscles. A myokinetic arm model for esti-
mating joint torque from EMG signals during maintained
posture was presented in [1]. This model was based on
anatomical and physiological data to estimate joint torques
from EMG. However, the model was limited to maintained
posture in planar arm configurations. An index of muscle
quasi-tension calculated from EMG signals that was used
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for estimating arm stiffness was presented in [2], but again
the configurations tested were only on the plane, while a
continuous profile of force was not estimated through EMG.
The authors have used EMG signals from four muscles of
the arm in order to compute force exerted in planar motion
in the past [3], however the arm configurations tested were
limited, while again the arm was restricted on a plane parallel
to the human transverse plane.
The human arm is definitely a quite complex mechanism,

with a highly redundant structure both in kinematic and
actuation level. A large number of muscles (approximately
30) actuate the shoulder, elbow, and wrist joints, while
the kinematic redundancy is used for improving dexterity
during the execution of complicated motion and/or force
tasks. However, one can easily argue that humans learn to
execute specific tasks in a certain way, while whether it’s the
“optimum” way or not is still under investigation. Focusing
on force tasks, humans learn to interact with the environment
quite easily, and once “trained”, they don’t significantly
vary their strategy [4]. Therefore, the way humans choose
to interact with the environment could be a combination
of variables related to the redundancy in both motor and
kinematic level.
In this paper, the force manipulability, thereafter men-

tioned as manipulability for simplicity, of the human upper
limb is analyzed for force tasks in the three-dimensional (3D)
workspace. Manipulability is a measure of the force exertion
capability of the arm along the axes of the given task,
and is dependent on arm configuration [5]. Multiple force
exertion tasks are executed by two subjects in different arm
configurations, along a variety of directions. The muscular
activity of the corresponding muscles is recorded and ana-
lyzed with respect to the force execution capability of the arm
as described by the manipulability, for a given configuration
and force task. Results show that arm manipulability plays
a significant role in the execution of the force task, affecting
the recruitment of the muscles and their activity. Using this
result, a decoding algorithm is created to transform EMG
signals to a continuous representation of exerted force along
the three axes of the workspace. The proposed method is
tested with two subjects in many different configurations
covering a wide portion of the arm workspace.
The rest of the paper is organized as follows: Section

II analyzes the procedures and experimental methods and
algorithms used, Section III presents the results on the
manipulability effects on force tasks and the decoding of
exerted forces, while Section IV concludes the paper.
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Fig. 1. Definition of the 5 modelled joint angles for the shoulder and
elbow.

II. METHODS

A. Rationale and requirements
There is no doubt that the kinematic structure of the

human upper extremity is quite efficient, while very complex.
Narrowing our interest down to the upper limb and not
considering finger motion, the kinematics of the arm can
be modeled with 7 degrees of freedom, which leads to the
definition of human arm redundancy. The latter however
is not only exploited in performing arm motions in the
3D space, but also in interacting with the environment,
where forces are exerted. In other words, arm configuration
is appropriately selected based on the force tasks to be
executed. In other to quantify the force exertion capability,
we use the measure of manipulability. Briefly, if τ ∈ R

n

the vector of joint torques for a series manipulator with n
degrees of freedom (DoFs), then a unity sphere in the joint
torque space is described by τT τ = 1. The latter, accounting
for τ = JT (q)h, where q is the joint angle vector, JT (q)
is the Jacobian matrix and h is the vector of the forces at
the end-effector, is mapped into the ellipsoid in the space of
end-effector forces as shown below:

hT
(
J (q) JT (q)

)
h = 1. (1)

Equation 1 defines the force manipulability ellipsoid, there-
after mentioned as manipulability ellipsoid for simplicity.
This ellipsoid characterizes the end-effector forces that can
be generated with the given set of joint torques, with the
manipulator in a given posture [5].
In this study, we focused on the principal joints of the

upper limb, i.e. the shoulder and the elbow. The wrist
motion was not included in the analysis for simplicity.
Therefore, 5 degrees of freedom were analyzed; shoul-
der abduction-adduction, shoulder flexion-extension, shoul-
der external-internal rotation, elbow flexion-extension and
forearm pronation-supination, which can be simulated by 5
corresponding joint angles, i.e. q1, q2, q3, q4, q5 for the
human arm, as shown in Fig. 1. For more details on the
kinematics the reader should refer to [6].
Following the notation in (2), in our case h =[
Fx Fy Fz

]T where Fx, Fy , Fz the forces exerted to

Fig. 2. The experimental setup.

the environment along the three corresponding axes XH,
YH, ZH as shown in Fig. 2, J (q) ∈ R3×5 is the Jacobian
matrix, and τ ∈ R

5 is the vector of joint torques at
the corresponding human joints modelled. Therefore, the
ellipsoid described by (1) can be drawn in the 3D space, for
each configuration of the human arm. Along the direction
of the major axis of the ellipsoid the human arm can exert
larger forces, than along the direction of the minor axes. Let
x(1), x(2), x(3) ∈ R

3 be the axes of the ellipsoid which are
given by:(

λiI−
(
J (q)JT (q)

))
x(i) = 0, i = 1, 2, 3 (2)

where λi are the eigenvalues of the matrix J (q)JT (q). The
principal axis of the ellipsoid is the one corresponding to the
larger eigenvalue.
Since the human motor control seems to exploit redun-

dancy not only for kinematic control but also for interacting
with the environment, this study focused on how the ability to
exert forces given a configuration (as described by the force
manipulability ellipsoid), affects the recruitment and activity
of the force sources of the human arm, i.e. the skeletal
muscles. Therefore, an experimental platform is needed to
be able to measure exerted forces and muscle activity for
a variety of different arm configurations, and compare them
based on the manipulability ellipsoids for each configuration.
The purpose of this work however was not to investigate how
humans choose their arm configuration according to the task
force requirements, but given a preferred arm configuration,
what is the effect of the manipulability ellipsoid on the
activation of the musculoskeletal system.

B. Apparatus
The experimental setup included subjects holding a handle

mounted on the end-effector of a 7 DoFs robot arm. Subjects
were seated with their trunk restrained to a chair through
harness belt. The subjects gripped an appropriately designed
handle, mounted on the robot end-effector, with their dom-
inant arm (the right arm for all subjects participated). The
handle was inside a tube, in which the subject’s forearm was
inserted. The subjects’ forearm was supported inside the tube
through elastic straps transversely inserted into the tube. The
tube was appropriately designed so that it restrained wrist
motion (wrist flexion-extension and radial-ulnar deviation).
The subjects were instructed to always hold the handle firmly.
The handle-tube along with the subjects’ hand is graphically
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depicted in Fig. 2. A 7-DoF robot arm, equipped with a
force-torque sensor at it’s end-effector, was used to generate
motion perturbations to the human arm, through the tube-
handle system shown. The tube was firmly connected with
the force-torque sensor. Position tracker sensors were also
placed at the elbow and the wrist of the user, while the
reference system was attached on the shoulder of the user.
XR, YR, ZR are the robot reference frame axes. XH, YH,
ZH are the human (or position tracker) reference frame axes.
XF, YF, ZF are the force-torque sensor reference frame
axes.
The tube-handle system was mounted on a 7-DoF robot

manipulator (PA-10, Mitsubishi Heavy Industries). The robot
arm can be controlled in joint space, either in position or in
torque, while feedback for position and torque at each joint
is available in real time. Further information for hardware
characteristics, kinematics and dynamics can be found in
[7]. Between the tube-handle mounting and the robot end-
effector, a 6-axis force-torque sensor (JR3 Inc.) was included
for measuring human-robot interaction forces in the three
axes of space. The subjects were placed facing the robot
from a distance so that most of their arm workspace1 was
accessible from the robot workspace. Fig. 2 depicts the
experimental setup.
A magnetic position tracking system (Isotrak II, Polhemus

Inc) was used for measuring the human arm configuration.
The position tracking system was equipped with a base
reference system, with respect to which, the 3D-position and
orientation of two small position sensors is given in real-
time. The size of the position sensors was 2.83(W) 2.29(L)
1.51(H) cm, and they were firmly attached at the elbow (at
the olecranon) and the wrist (at the styloid process of radius)
of the subject, while the reference system was placed on
the subjects’ shoulder as shown in Fig. 1. The axes of the
robot arm and position tracking system were properly aligned
during a calibration procedure, using online measurements of
both systems. Let XR, YR, ZR be the robot reference axes
vectors, and let XH, YH, ZH be the human references axes
vectors (i.e. the position tracking system base). Then, the
relationship between them, as shown in Fig. 2, is defined by[

XR YR ZR

]
=

[ −YH ZH −XH

]
(3)

Finally, using the tracker position and orientation measure-
ments, the modelled joint angles were computed through
inverse kinematics. The inverse kinematic equations are
omitted for simplicity, while the reader should refer to [6]
for further analysis.
The position tracking system along with the servo-

controller of the robot arm were interfaced with a personal
computer (PC) running Linux through serial communication
(RS-232) and ARCNET protocols respectively. The force-
torque sensor measurements were collected using the appro-
priate measurement PCI board mounted on the same PC.
The robot arm control frequency was 500 Hz, the force-
torque measurement frequency was also 500 Hz, while the
1The subjects’ trunk and behind this point were out of the workspace of

the robot arm for safety.

Fig. 3. Starting points, S(i), i = 1, 2, . . . , 16, and corresponding target
points, P (i)

n , n = 1, 2, . . . , 16, for end-point perturbation in the 3D arm
workspace. All the starting points lie on a sphere. A close-up of a part of
the sphere, with some starting points lying on it, is shown at the bottom
left side.

position tracker provided measurements at 30 Hz. Data from
the position tracker were re-sampled offline at 500 Hz,
using an anti-aliasing FIR filter (low-pass, order: 24, cut-off
frequency: 100 Hz).
EMG signals were acquired using a signal acquisition

board (NI-DAQ 6036E, National Instruments) connected to
an EMG system (Bagnoli-16, Delsys Inc.). Single differ-
ential surface EMG electrodes (DE-2.1, Delsys Inc.) were
used. The main responsible muscles for the chosen task
were recorded: deltoid (anterior), deltoid (middle), pectoralis
major, trapezius descendens (upper), biceps brachii, brachio-
radialis, triceps brachii (long head). The EMG recordings
from each muscle were preprocessed using the linear envelop
technique, i.e. full-wave rectified, low-pass filtered and nor-
malized to their maximum voluntary isometric contraction
(MVC) value [8]. MVC values for all muscles were acquired
using guidelines found in [9].

C. Procedures and Tasks
Two subjects participated in the experiments. Each subject

was asked to firmly hold the handle while looking towards
the robot arm, as shown in Fig. 2. The robot arm end-
effector was initially positioned at 16 starting 3D points
(S(i), i = 1, 2, . . . , 16), inside the human arm workspace.
More specifically, the starting points belonged to a sphere
of radius 20 cm and center a point chosen as the center
of studied arm workspace2. Starting from each point S(i),

2The center of the studied human arm workspace was chosen at a point
at the height of subjects chest, on the sagittal plane, at an approximate
distance of 40 cm from the coronal plane. The latter choice was not based
on any physiologically defined point. It was selected to allow studying a
wide range of the available human arm workspace, while guaranteeing the
safety of the subjects.
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the robot end-effector was moved to 16 surrounding points
P

(i)
n , n = 1, 2, . . . , 16, that belonged to a sphere with center
the point S(i) and radius equal to 3 cm. All the points and
motion paths are depicted in Fig. 3.
The robot end-effector initiated the motion from each point

S(i), i = 1, 2, . . . , 16, to each point P (i)
n , n = 1, 2, . . . , 16,

lasting for 3 seconds (center-out phase). After arriving at
point P (i)

n , the robot stayed there for 2 seconds (relax phase
1), and then returned to the starting point S(i) following a
constant velocity line path taking 2 seconds (return phase).
Finally the robot end-effector stayed there for 2 seconds
(relax phase 2), before initiating motion for the next P (i)

n+1

point. The subjects were instructed to try to maintain their
hand initial position S(i) only during the center-out phase,
i.e. trying to restrain to robot center-out motion. During all
the other phases (relax phase 1 and 2, and return phase) the
subjects were instructed to relax and passively follow robot
induced motion.
The perturbed motion coming from the robot end-effector

motion during the center-out phase was specifically de-
signed as sinusoidal, producing a variety of exerted force
magnitudes. More specifically, the sinusoidal trajectory was
designed so that the robot end-effector was performing
two full-periods of sinusoidal oscillations around the initial
point S(i), along each axis of motion. The amplitude of
the sinusoidal motion was equal to the distance between
the initial point S(i) and the target point P (i)

n , while the
duration of sinusoidal motion was three seconds, succeeded
by the two-second resting period (relax phase 1). Let S(i) =[
x
(i)
0 y

(i)
0 z

(i)
0

]T
and P

(i)
n =

[
x
(i)
nf y

(i)
nf z

(i)
nf

]T
be

the coordinates of the starting and the surrounding points
with respect to the robot base reference system. The sinu-
soidal trajectory

[
x
(i)
sn (t) y

(i)
sn (t) z

(i)
sn (t)

]T
along each

axis XR, YR, ZR respectively, was given by:⎡
⎢⎣

x
(i)
sn (t)

y
(i)
sn (t)

z
(i)
sn (t)

⎤
⎥⎦ =

⎡
⎢⎣

x
(i)
0

y
(i)
0

z
(i)
0

⎤
⎥⎦+

⎡
⎢⎣

x
(i)
nf − x

(i)
0

y
(i)
nf − y

(i)
0

z
(i)
nf − z

(i)
0

⎤
⎥⎦ sin

(
4π

3
t

)

(4)
where t represents time, and t = 0 denotes the start of the
center-out phase for each of the surrounding points P (i)

n .
Therefore, the 3D position of the robot end-effector at

each time instance was defined by the sinusoidal trajectory
in (4). Regarding the orientation, the robot end-effector was
controlled to have all orientation angles (roll, pitch and
yaw) equal to zero. This essentially guaranteed that the
tube-handle system would keep a constant orientation with
respect to the subject, which was identical to the initial
one, as shown in Fig. 23. Having the desired pose of the
robot end-effector, the appropriate robot joint angles were
computed using the pseudo-inverse Jacobian method [5]. For
details on this procedure, the reader can refer to [7]. All
the robot trajectories were designed and computed offline.
Having computed the desired robot trajectories in joint space,

3The tube longitudinal axis was always perpendicular to the coronal plane.

the robot could be commanded to track those trajectories
using its high performance servo controller, with a maximum
tracking error in joint space that did not exceed 0.02 deg.
Finally, the force-torque sensor was mounted on the robot
end-effector, while its axes were aligned to those of the robot,
as shown in Fig. 2.
Each of the two subjects (2 males of 25 and 26 years old

respectively) completed the experimental session including
the 16 surrounding target P (i)

n , n = 1, 2, . . . , 16, for each of
the 16 starting points S(i), i = 1, 2, . . . , 16 inside their arm
workspace. The recording of the data started as soon as the
robot end-effector initiated motion from each of the points
S(i), i = 1, 2, . . . , 16 to its surrounding targets P (i)

n , n =
1, 2, . . . , 16. For example, if t = 0 is when the robot initiated
motion from point S(1) to each one of its 16 surrounding
targets P (1)

1 , P (2)
1 , . . ., P (16)

1 , then the experiment stops after
16 motions from S(1) to each P

(1)
n , n = 1, 2, . . . , 16 and

back to S(1), lasting eventually t = 9 ∗ 16 = 144sec. Then
the robot was moved to the next initial point (i.e. S(2)) and
the next session was started as soon as the subject confirmed
that he was ready after resting his arm. All experimental
procedures were conducted under a protocol approved by the
National Technical University of Athens Institutional Review
Board.

III. RESULTS

A. Manipulability and musculoskeletal system
Let tni denote each trial, during which, the robot end-

effector initiated the motion from each point S(i), i =

1, 2, . . . , 16, to each point P (i)
n , n = 1, 2, . . . , 16, while

the subject was exerting opposing forces along the direction
of the motion of the end-effector. Moreover, for each point
S(i), i = 1, 2, . . . , 16, the human arm configuration qi ∈ R

5

was computed from the position tracking system. Since the
surrounding points P (i)

n to each S(i) were very close, the arm
configuration is assumed to be constant throughout each trial
tni . Knowing the arm configuration, we could compute the
manipulability ellipsoid for each trial. Moreover, knowing the
path of the robot end-effector, the direction of the induced
motion for each trial could also be computed. Let pn

i denote
a unit vector along the direction of motion for trial tni ,
starting from S(i). Let n

i x(1), n
i x(2), n

i x(3) be the axes of
the manipulability ellipsoids, where n

i x(1) the major axis.
Then, a measure of alignment within the vector pn

i and each
of the axes n

i x(1), ni x(2), ni x(3), defined by n
i A1, ni A2, ni A3

respectively, was computed by:

n
i Ak =

pn
i · n

i x(k)∥∥n
i x(k)

∥∥ , k = 1, 2, 3 (5)

where (·) denotes the vectors inner product. The alignment
measures n

i Ak, k = 1, 2, 3 take value at the range [−1, 1],
while the closer its absolute value is to 1, the more the vector
pn
i is aligned to the corresponding axis of the manipulability
ellipsoid. The values of the alignment measure n

i Ak, k =
1, 2, 3, for all trials (i.e. 16×16 = 256 trials) were computed
for each subject.
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Fig. 4. Measure of muscular effort E with respect to the absolute value
|A1| of the alignment measure with the manipulability ellipsoid major axis.
The measured points (red dots) and a fitted probability density function
for their joint probability distribution p (|A1| , E) are shown. A Gaussian
Mixture Model with 5 components was used for fitting the joint probability
distribution [10].

Among all trials, the magnitude of applied force could
be assumed as similar, since the subjects were instructed to
withstand to the robot induced motion equally across the
workspace. However, in order to quantify the effort “paid”
for each trial, the muscular activity was also used. The
integral of the EMG signals after preprocessing them (using
the linear envelop technique) was computed for each muscle,
for each trial. Let n

i U be the sum of those integrals for the
trial tni . Then, we defined a measure of effort n

i E, for each
trial tni , as the quotient of the integral of the total force
applied through the trial to the muscle effort represented by
n
i U , i.e.

n
i E =

n
i Fint
n
i U

(6)

The computed values of the measure of effort ni E are plotted
with respect to the absolute value of the alignment measure
n
i A1 for all trials in Fig. 4. Moreover, a fitted probability
distribution function is also drawn. As it can be seen, the
muscular effort was less in the cases where the absolute
alignment measure with the ellipsoid major axis was close
to 1, i.e. when the direction of the exerted force was closer
to the direction of the manipulability ellipsoid major axis.
Finally, it must be noted that we chose the aforementioned
way to describe muscular effort, while many other variables
or measures could have been used.

B. Decoding 3D force from EMG
Based on the effect of the manipulability on the effort of

muscles during force exertion, as analyzed above, we built a
decoding algorithm to estimate arm exerted forces along the
3 axes of the arm workspace. The decoding scheme included
the information about the alignment of the major axis of
the manipulability ellipsoid (for a given arm configuration)
with the direction of the exerted force. Given the alignment
measure between the two vectors as described in (5), a set of
linear decoding models was trained. Each member (decoding
model) of this set was trained using only data of muscle
activations and exerted forces which had similar alignment
measures. The method is described below.

The inputs to the decoder were the processed muscle
activations. The muscles activations were represented in a
low-dimensional space, by using the Principal Component
Analysis (PCA) method for reducing the data space. A three
dimensional space was finally selected for representing the
7 muscles’ activation. Details on the algorithm application
on EMG data can be found in [11], [12]. The output of the
decoder were the estimates of the continuous representation
of the force vector magnitude in 3D space. The training data
were grouped in subsets, each one of which included data
(inputs and outputs) for experiments with similar to each
other alignment measures. The absolute value of the later
was used, and the resulted range [0, 1] was sectioned in 10
subsets with equal width (0.1). For each of the subsets, a
linear hidden-state model was trained and used for decoding.
A linear hidden-state model is described by the following set
of equations:

xt+1 = Gixt +BiUt + vt

Ft = Cixt +wt
(7)

where xt ∈ R
d is a hidden state vector, d is the dimension

of this vector and vt, wt are zero-mean Gaussian noise
variables in process and observation equations respectively,
i.e vt ∼ N (0,Vi), wt ∼ N (0, σi), where Vi ∈ R

d×d,
σi ∈ R are the covariance matrix and variance of vt,
wt respectively. Matrices Gi (d× d), Bi (d× 3) and
Ci (1× d) represented the dynamics of the hidden states,
the relation between the low dimensional embeddings of
muscles activation (U) and the hidden states dynamics, and
the relation of the hidden states to the output variable of
the model respectively. The output variable of the decoding
model is the magnitude of the exerted force F. The size
d of the hidden state vector for each model was chosen
using the Akaike criterion [13]. The subscript i in the model
parameters denotes the different models for each of the 10
subsets based on the manipulability alignment measure, as
defined below. Linear hidden-state models of similar form
were used by the authors in the past, while details can
be found in [14]. Therefore, a switching decoding scheme
was used, where the switching variable (i.e. the measure
of alignment for a given arm configuration) was controlling
which of the models to be used for each configuration.
The original data set collected from each subject during

the previously described experiments was used for training.
After collecting the training data, each subject was asked
to perform some new force tasks in ten different points
in the 3D arm workspace, lasting about 5 seconds each.
The switching decoding method was tested using those new
experiments. The decoding method results are shown in Fig.
5. As it can be seen, the force estimates were close to the
real ones measured for each of the 10 points that spanned a
wide portion of the arm workspace. The root mean squared
error (RMSE) and the correlation coefficient (CC) between
the estimated and the real ones are also reported in Table
I. The same criteria are computed using a single decoding
model for all cases, i.e. without taking into consideration
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Fig. 5. Results on decoding 3D force magnitude from EMG recordings
using the proposed method. Real and estimated values for force magnitude
are shown for the subject’s hand being in 10 different points in the arm
workspace.

TABLE I
ACCURACY IN ESTIMATING HUMAN ARM EXERTED FORCES WITH THE

THE PROPOSED SWITCHING METHODOLOGY AND A SINGLE DECODING

MODEL.

Decoding model CC RMSE (N)
Switching 0.97 4.09
Single 0.78 14.23

the effect of the manipulability in muscle activation and
in general the recruitment of the musculoskeletal system in
force exertion tasks. These values are also included in Table I
for comparison. As it can be seen, the information regarding
the arm manipulability in the decoding process significantly
improved the overall accuracy.
At this point, it must be noted, that although the 3D

points in the workspace used for testing were selected by
the subjects, their arm configuration and the direction of
the exerted force were recorded and used for computing the
manipulability information and alignment measure. However,
this does not severely affect the applicability of the method,
since in cases of worn devices (i.e. arm exoskeletons),
this kind of information (i.e. arm configuration) is usually
available through the device’s sensors. Finally, all results pre-
sented are from subject 1, however they were also confirmed
by subject 2 who showed very similar behavior.

IV. CONCLUSIONS AND DISCUSSION

In this paper, the arm force manipulability and its effect
on the recruitment of the musculoskeletal system in arm
force tasks was analyzed. It was shown that the axes of
the manipulability ellipsoid play a significant role on the
activation of the muscle while the arm is interacting with
the environment, i.e. exerting forces to it. The main novelty
of this paper is that for the first time, the human arm

manipulability is analyzed with respect to the force exerted
and the muscle activations. Moreover, a decoding scheme
is proposed that can estimate a continuous representation of
the exerted force magnitude using the muscle activation as
described by the surface electromyogram.
The proposed scheme could be used for controling devices

that are coupled or worn by humans for tasks involving force
exertion to the environment. Until now, most of the studies
have focused on the interaction between the human and the
worn device. However, as the applications of the coupled
human-robot devices are increasingly emerging in various
fields (i.e. medical devices, rehabilitation robots, prosthetic
devices), the need of the control of the interaction with
the environment entailing contact forces is greater than ever
before. Nevertheless, the proposed decoding scheme could
be used for the control of arm exoskeletons during force
tasks. Although the use of EMG signals as control interface
has been proposed in the past, it has never been realized in
orthotic devices that interact with the environment. In this
paper, the effect of arm manipulability, which essentially
depends on the arm configuration, was analyzed, while a
robust method for using the electromyogram for the control
of such devices was proposed.
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