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Abstract—In this work, we focus on iterative distributed model predictive
control (DMPC) of large-scale nonlinear systems subject to asynchronous,
delayed state feedback. The motivation for studying this control problem is
the presence of asynchronous, delayed measurement samplings in chem-
ical processes and the potential use of networked sensors and actuators
in industrial process control applications to improve closed-loop perfor-
mance. Under the assumption that there exist upper bounds on the time
interval between two successive state measurements and on the maximum
measurement delay, we design an iterative DMPC scheme for nonlinear sys-
tems via Lyapunov-based control techniques. Sufficient conditions under
which the proposed distributed MPC design guarantees that the state of
the closed-loop system is ultimately bounded in a region that contains the
origin are provided. The theoretical results are illustrated through a cat-
alytic alkylation of benzene process example.

Index Terms—Asynchronous measurements, distributed model predic-
tive control (DMPC), measurement delays, nonlinear systems, process con-
trol.

I. INTRODUCTION

Model predictive control (MPC) is a popular control strategy for the
design of high performance process control systems and is typically
studied within the centralized control paradigm in which all the manip-
ulated inputs are optimized in a single optimization problem [1]. While
the centralized paradigm to MPC has been successful, in recent years,
there is a trend for the development of decentralized and distributed
MPC due to the significantly increased computational complexity, or-
ganization and maintenance difficulties as well as reduced fault toler-
ance of centralized MPC (e.g.,[2], [3]).
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In the literature, several approaches for the design of decentralized
and distributed MPC have been reported; please see [4], [2], [3] for
reviews of results in this area. Specifically, in [5], a distributed MPC
(DMPC) scheme for coupled nonlinear systems subject to decoupled
constraints was designed. In [6], a robust DMPC design was devel-
oped for linear systems with coupling between subsystems modeled
as bounded disturbances. In [7], a decentralized MPC was proposed
for nonlinear systems with no information exchange between the local
controllers and the stability of the decentralized control system was en-
sured by a set of contractive constraints. In [8], a cooperative DMPC
scheme was developed for linear systems with guaranteed stability of
the closed-loop system and convergence of the cost to its optimal value,
and in [9], a game theory based DMPC scheme for constrained linear
systems was proposed. In our previous work [10], [11], a sequential
DMPC architecture and an iterative DMPC architecture were designed
for nonlinear systems via Lyapunov-based control techniques. Specif-
ically, in the sequential DMPC architecture, the distributed controllers
communicate via one-directional communication, are evaluated in se-
quence and once in each sampling time; and in the iterative DMPC
architecture, the distributed controllers communicate via bi-directional
communication, are evaluated in parallel and iterate to achieve con-
vergence in each sampling time. However, all of the above results are
based on the assumption of continuous sampling of the entire plant state
vector and assuming no delays and perfect communication between the
sensors/actuators and the controllers.
In many chemical process applications, the assumption of contin-

uous, undelayed process state sampling and perfect communication be-
tween the sensors/actuators and the controllers may not hold because
of measuring difficulties of some process states (e.g., species concen-
trations) and communication network malfunctions introducing data
losses and time-varying delays [12]. Previous work on MPC design
for systems subject to delayed feedback has primarily focused on cen-
tralized MPC designs [13]–[15] and little attention has been given to
the design of DMPC for systems subject to delayed measurements. In
[16], the issue of delays in the communication between distributed con-
trollers was addressed. In our previous work [17], we developed se-
quential DMPC schemes for nonlinear systems subject to asynchronous
and delayed state feedback. The approach used in [17] can be extended
to handle asynchronous measurements in an iterative DMPC, however,
it can not be used to handle measurement delays in iterative DMPC.
Motivated by the above considerations, in this work, we focus on iter-

ative DMPC of large-scale nonlinear systems subject to asynchronous,
delayed state feedback. Under the assumption that there exist upper
bounds on the time interval between two successive statemeasurements
and on themaximummeasurement delay, we design an iterative DMPC
scheme for nonlinear systems via Lyapunov-based control techniques.
Sufficient conditions under which the proposed distributed MPC de-
sign guarantees that the state of the closed-loop system is ultimately
bounded in a region that contains the origin are provided. The theo-
retical results are illustrated through a catalytic alkylation of benzene
process example.

II. PRELIMINARIES

The operator � � � is used to denote Euclidean norm of a vector while
� � �� refers to the weighted Euclidean norm, defined by ���� � ����.
A continuous function � � ��� ��� ��� �� is said to belong to class� if
it is strictly increasing and satisfies ���� � �. The symbol �� is used
to denote the set �� �� �� � �� � � ��� � 	� where � is a scalar
positive definite, continuous differentiable function and � ��� � �, and
the operator ’
’ denotes set subtraction, that is, �
� �� �� � �� �

� � �� � 
� ��. The symbol �� denotes an estimate of �. The symbol
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������� denotes a square diagonal matrix whose diagonal elements are
the elements of vector �.

We consider nonlinear systems of the form

����� � ������� 	

�

���

������������� 	 ����������� (1)

where ���� � 	� denotes the vector of state variables,����� � 	� ,

 � 
� � � � ��, are� sets of control (manipulated) inputs and ���� �

	� denotes the vector of disturbance variables. The � sets of in-
puts are restricted to be in � nonempty convex sets 
� � 	� ,

 � 
� � � � ��, which are defined as 
� �� ��� � 	� � ���� �
����� �� 
 � 
� � � � �� where ����� , 
 � 
� � � � ��, are the magni-
tudes of the input constraints. The disturbance vector is bounded, i.e.,
���� � � where� �� �� � 	� � ��� � �� � � 
�.

We assume that ����, �����, 
 � 
� � � � ��, and ���� are locally
Lipschitz vector functions and that the origin is an equilibrium point
of the unforced nominal system (i.e., system of (1) with ����� � 
,

 � 
� � � � � �, ���� � 
 for all �) which implies that ��
� � 
.

We further assume that there exists an explicit control law ���� �

������
� � � � ������ �� with �� � �����, 
 � 
� � � � ��, which ren-

ders (under continuous state feedback) the origin of the nominal closed-
loop system asymptotically stable while satisfying the input constraints
for all � inside a given stability region; please see [19] for results on the
explicit construction of ����. This assumption implies that there exist
functions �����, 
 � 
, 2, 3, 4 of class � and a continuously differ-
entiable Lyapunov function � ��� for the nominal closed-loop system,
that satisfy the following inequalities [18], [19]:

������� � � ��� � ��������
�� ���

��
��������

�� ���

��
���� 	

�

���

���������� � 	 �������

����� � 
�� 
 �
� � � � �� (2)

with 
 � 
� � � � �� for all � � �� � 	� where �� (typically
taken to be a level set of � ���) denotes the stability region of the
closed-loop system under ����. We denote the region �� � � as the
stability region of the closed-loop system under ����. The construc-
tion of � ��� can be carried out in a number of ways using system-
atic techniques like, for example, sum-of-squares methods. Because of
the local Lipschitz property assumed for the vector fields ����, �����,

 � 
� � � � ��, and ���� and of the boundedness of the manipulated
inputs ��, 
 � 
� � � � ��, and the disturbance �, there exists a positive
constant � such that:

���� 	

�

���

������� 	 ����� �� (3)

for all � � ��. Moreover, if we take into account the continuous differ-
entiable property of the Lyapunov function � ���, there exist positive
constants ��, �� and �� , 
 � 
� � � � � � such that:

��

��
����	

��

��
����� ��� �	 �

�
�
��

��
���� � ��

��

��
�����	

��

��
����

�� ��� �� 	 �
��� 
 � 
� � � � �� (4)

for all �� �� � ��, �� � 
�, 
 � 
� � � � ��, and � � � .

III. ITERATIVE DMPC WITH ASYNCHRONOUS,
DELAYED MEASUREMENTS

In this section, we design an iterative DMPC scheme which takes
into account asynchronous, delayed measurements explicitly and pro-

Fig. 1. Iterative DMPC with asynchronous, delayed measurements.

vides deterministic closed-loop stability properties. In the proposed de-
sign, we will design � Lyapunov-based MPC (LMPC) controllers to
compute ��, 
 � 
� � � � ��, and refer to the LMPC computing the input
trajectories of �� as LMPC 
. A schematic of the proposed iterative
DMPC for systems subject to asynchronous, delayed measurements is
shown in Fig. 1.
We assume that the full state of the system (1) is received by the

controllers at asynchronous time instants �	 where ��	�	� is a random
increasing sequence of times and that there are delays in the mea-
surements received by the controllers. In order to model the delays in
measurements, an auxiliary variable �	 is introduced to indicate the
delay corresponding to the measurement received at time �	 , that is,
at time �	 , the measurement ���	 	 �	� is received. In order to study
the stability properties in a deterministic framework, we assume that
there exists an upper bound �� on the interval between two succes-
sive measurements and the delays associated with the measurements
are smaller than an upper bound �, which is, in general, related to
measurement sensors and data transmission networks. We note that for
chemical processes, the delay in the measurements received by a con-
troller are mainly caused in the measurement sampling process. We
also assume that the time instant in which a measurement is sampled
is recorded and transmitted together with the measurement. This as-
sumption is practical for many process control applications and implies
that the delay in a measurement received by the controllers can be as-
sumed to be known. Note that because the delays are time-varying, it
is possible that at a time instant �	 , the controllers may receive a mea-
surement ���	 	 �	� which does not provide new information (i.e.,
�	 	 �	 � �	�� 	 �	��); that is, the controller has already received
a measurement of the state after time �	 	 �	 . In this case, the con-
trollers only use measurements that provide new information. Based
on the above modeling of the measurements, we can calculate that the
maximum amount of time the system might operate in open-loop fol-
lowing �	 is� 	 �� 	 �	 [17]. This upper bound will be used in the
formulation of the iterative DMPC design below.
We propose to take advantage of the system model both to estimate

the current system state from a delayed measurement and to control the
system in open-loopwhen new information is not available. To this end,
when a delayedmeasurement is received, the distributed controllers use
the system model and the input trajectories that have been applied to
the system to get an estimate of the current state and then based on
the estimate, MPC optimization problems are solved to compute the
optimal future input trajectory that will be applied until new measure-
ments are received. The proposed implementation strategy for the iter-
ative DMPC design is as follows:
1) When ���	 	 �	� is available at �	 , all the distributed controllers

receive it and check whether it provides new information. If it
does, go to step 2. Else, go to step 5.
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2) The controllers estimate the current system state ������ and then
evaluate their future input trajectories in an iterative fashion with
initial input guesses generated by ����.

3) At iteration � (� � �):
3.1. Each controller evaluates its future input trajectory based
on ������ and the latest received input trajectories of all the
other controllers (when � � �, initial input guesses generated
by ���� are used).
3.2. The controllers exchange their future input trajectories.
Based on all the input trajectories, each controller calculates
and stores the value of the cost function.

4) If a termination condition is satisfied, each controller sends its
entire future input trajectory corresponding to the smallest value
of the cost function to its actuators; if the termination condition is
not satisfied, go to step 3 (� � � � �).

5) When a new measurement is received, go to step 1 (� � � � �).
In order to estimate the current system state ������ based on �����

���, the distributed controllers take advantage of the input trajecto-
ries that have been applied to the system from �� � �� to �� and the
system model of (1) with ���� � �. Note that since the controllers ex-
change their input trajectories at the end of each iteration, they are able
to determine the inputs the other controllers implement which corre-
spond to the smallest cost value in each sampling time. Let us denote
the input trajectories that have been applied to the system as ��� ���,
	 � �
 � � � 
�. Therefore, ������ is evaluated by integrating the fol-
lowing differential equation:

������ � �������� �

�

���


���
�������� ���
 �� � 	�� � ��
 ��� (5)

with ����� � ��� � ���� � ���.
In order to proceed, we define ���� ���� for � � 	�
 �
� as the nom-

inal sampled trajectory of the system of (1) associated with the feed-
back control law ���� and sampling time
 starting from ������. Note
that � is the prediction horizon of the DMPC. This nominal sampled
trajectory is obtained by integrating the following differential equation
recursively:

����� ���� � ������ ����� �

�

���


������ ������������
�����


�� � 	�

 ��� ��
� (6)

where � � �
 � � � 
 � � �. Note that in (6), the control laws ��, 	 �

�
 � � � 
�, are implemented in a sample-and-hold fashion. Based on
���� ����, we define:

������ ���� � �������
�����
 �� � 	�

 ��� ��
� (7)

where � � �
 � � � 
� and � � �
 � � � 
 � � �. The sampled trajectory
���� ���� and the input trajectory ������ ���� will be used in the design
of the LMPC to construct the stability constraint and used as the initial
input guess for iteration 1 (i.e., ����� � ���� for 	 � �
 � � � 
�). Specif-
ically, the design of LMPC �, � � �
 � � � 
�, at iteration � is based on
the following optimization problem:

�
�
� �	���


�

�

�������
�

�

�

���

�������� �� (8a)

���� ������ � ���������

�

���


�������������
 ����� � �
����� (8b)

����� ��
��
��
� �� ����
 �	 �� � (8c)

������ �
��
��
� �� ���� 	 
�� 
 �� � 	�
 ���
� (8d)

����� ��� (8e)
�� �������

���

�

�
�������� � 
�������������

	
�� ����� �����

���

�
�

�
������ ����� � 
������ ����������� ���� 


�� � 	�
 ���
� (8f)

where��
� is the family of piece-wise constant functions,�
 and�
�,
	 � �
 � � � 
 �, are positive definite weighting matrices, �� is the pre-
dicted state trajectory of the nominal system, and ��� is the smallest
integer satisfying���
 � ������� . The optimal solution to the
optimization problem of (8) is denoted ���
� �� ���� for � � 	�
 �
�.
Accordingly, we define the final optimal input trajectory of LMPC �

as ��� �� ����. Note that the value of ��� depends on ��, so it may
have different values at different time instants and has to be updated
before solving the optimization problems. The constraint of (8d) im-
poses a limit on the input change in two consecutive iterations, i.e.,
for LMPC �, the magnitude of input change in two consecutive itera-
tions is restricted to be smaller than a positive constant
�� . Given that
����� provides a feasible, stabilizing initial solution to the optimiza-
tion problem of LMPC � (8), the constraint of (8d) allows LMPC � to
gradually (depending on the value of
�� ) optimize its input trajectory
and ensures that the iterations can be terminated at any number without
loss of closed-loop stability. The constraint of (8f) is used to guarantee
the closed-loop stability.
In the design of (8), the number of iterations �may be restricted to be

smaller than a maximum iteration number ���	 (i.e., � 	 ���	) and/or
the iterations may be terminated when a maximum computational time
is reached.
The manipulated inputs of the closed-loop system under the above

iterative DMPC with delayed measurements are defined as follows:

����� � �
�
� ��� ������
 	 � �
 � � � 
�
 �� � 	��
 ��
�� (9)

for all �� such that �� � �� � ���
���

�� � �� and the variable � denotes

the smallest integer that satisfies ��
� � ��
� � �� � �� .
Remark 1: For general nonlinear systems, there is no guaranteed

convergence of the optimal cost of the distributed optimization of (8)
to any value. Note also that the implementation strategy of the DMPC
guarantees that the optimal cost of the distributed optimization of (8)
is upper bounded by the cost of the controller ���� at each sampling
time. We further note that in the case of linear systems, the constraint
of (8f) can be written in a quadratic form with respect to �� and it
can be verified that the optimization problem of (8) is convex. If the
input given by LMPC � of (8) at each iteration is defined as a convex
combination of the current optimal input solution and the previous
one (e.g., �
��� ���� � ��� ���

��� ���

��
� �� ���� � ���

��

� �� ���� where

�

��� �� � � with � � �� � �, ���
� is the current solution given by
the optimization problem of (8) and �
��� is the convex combination of
the solutions obtained at iteration � � �), then it can be proved that
the optimal cost of the distributed LMPC of (8) converges to the one
of the corresponding centralized control system [20], [8]. These con-
siderations imply that there is a balance between controller evaluation
time and closed-loop performance that should be struck in the control
system architecture (i.e., iterative or centralized) and/or the determi-
nation of the maximum iteration number, ���	.

A. Stability Analysis

The stability properties of the iterative DMPC of (8)–(9) are stated
in Theorem 1 below. To state Theorem 1, we need the following propo-
sitions.
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Proposition 1 (cf. [21], [11]): Consider the nominal sampled tra-
jectory �� of the system of (1) in closed-loop with the controller ����
applied in a sample-and-hold fashion and with open-loop state estima-
tion. Let �� �� � � and � � �� � � satisfy:

�����
��
� ����� � �

�	 � �
��
�

(10)

with �� � �� � �

��� �� 

���
� . If ���	 � � where ���	 �

��	�� ����
���� 
 � ����
�� � ���, ����� � �� and �� � � for
all �, then � �������� � ��	�� �������� ���� ���	�.

Proposition 1 ensures that if there is no measurement delay and the
nominal system under the control of ���� implemented in a sample-
and-hold fashion starts in ��, then it is ultimately bounded in �� .
Proposition 2 below provides an upper bound on the deviation of the
nominal state trajectory from the actual state trajectory when the same
control actions are applied.

Proposition 2 (cf. [11]): Consider the systems:

��	�
� � ���	�
�� �

�

���

����	�
��
��
�� ���	�
����
�

��
�
� � ���
�
�� �

�

���

����
�
��
��
�

with initial states �	�

� � �
�

� � ��. There exists a class � func-
tion �� ��� such that ��	�
� � �
�
�� � �� �
 � 

� for all �	�
�,
�
�
� � �� and all ��
� � � where �� ��� � �����


 � � 
����
with � being the upper bound of the disturbance ��
� and �� , ��
being positive real numbers.

Proposition 3 bounds the difference between the magnitudes of the
Lyapunov function of two states in ��.

Proposition 3 (cf. [21]): Consider the Lyapunov function � ��� of
the system of (1). There exists a quadratic function �� ��� such that
� ��	� � � ��
� � �� ���	 � �
�� for all �	� �
 � �� with �� ��� �
����

��
� ������	��

� and 	� � �.
Proposition 4 bounds the difference between the nominal state tra-

jectory (i.e., �	�
� in Proposition 4) under the optimized control inputs
at the current iteration (i.e., 
�� �
�, � � 
� � � � ��, in Proposition 4)
and the predicted nominal state trajectory (i.e., �
�
� in Proposition 4)
generated in the optimization problem of LMPC � with 
�, � 	� �, de-
termined at a previous iteration (i.e., 
� � 
���� , 
 � 	� �) and 
�
calculated at the current iteration (i.e., 
� � 
�� ).

Proposition 4: Consider the systems:

��	�
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�� �

�

���

����	�
��

�
� �
�

��
�
� � ���
�
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�� ����

���

����
�
��

���
� �
� � ����
�
��


�
��
�

with initial states �	�

� � �
�

� � ��. There exists a class � func-
tion ������� such that ��	�
� � �
�
�� � �����
 � 

� for all �	�
�,
�
�
� � ��, and 
�� �
�, 


���
� � �� and �
�� �
��


���
� �
�� � �
� with

� � 
� � � � ��.
Proof: Define ��
� � �	�
� � �
�
�. The time derivative ���
�

can be calculated as ���
� � ��	�
� � ��
�
�. Adding and subtracting
�� ����
��� ����
�
��


�
� �
� to/from the expression of ���
� and taking into

account the local Lipschitz properties assumed for the vector fields ����
and �����, � � 
� � � � ��, the boundedness of the manipulated inputs,
and the boundedness of the difference between 
�� �
� and 


���
� �
�, we

obtain the following inequality:

� ���
�� � �����
���

�� ����

���

����

���
� ���
���

�� ����

���

	����
��

where ��, ���� and 	��� (� � 
� � � � ��) are positive
constants. Denoting ���� � �� � �� ����

��� ����

���
�

and ���� � �� ����
��� 	����
�, and integrating � ���
��

with initial condition ��

� � �, we can obtain that

���
�� � ����������� �� ���� 
 � 
 . This proves Propo-

sition 4 with ������� � ����������� �
� � � 
 .

To simplify the proof of Theorem 1, we define a new function �����
based on ����, � � 
� � � � ��, as follows:

����� �

�

���




�
�� � �� 


���
�




����
��������

����
����

� �

(11)
It is easy to verify that ����� is a strictly increasing and convex func-
tion of its argument. In Theorem 1 below, we provide sufficient condi-
tions under which the iterative DMPC guarantees that the state of the
closed-loop system is ultimately bounded in a region that contains the
origin.

Theorem 1: Consider the system of (1) in closed-loop with the
DMPC design of (8)–(9) based on the controller ���� that satisfies
the conditions of (2) with class � functions �����, � � 
, 2, 3, 4. Let
�� �� � �, � � ���	 � �, � � �� � �, � 
 and! � � satisfy the
condition of (10) and the following inequality:

� 
�� � ��� ��� � �� ��� � ���� � �� ��� �!�� � � (12)

with  � being the smallest integer satisfying  �� � "� � ! and
 
 being the smallest integer satisfying  
� � "�. If ��

� � ��,
 �  � and �
 � �, then ��
� is ultimately bounded in �� � ��

where �� � ���	 � ��� ���� �� ��� � ���� � �� ��� �!��.
Proof: We assume that at 
� , a delayed measurement ��
� � ���

containing new information is received, and that the next measurement
with new state information is not received until 
���. This implies that

��� � ���� � 
� � �� and that the iterative DMPC of (8)–(9) is
solved at 
� and the optimal input trajectories 
�� �� �
��, � � 
� � � � ��,
are applied from 
� to 
���. In this proof, we will refer to ���
� for

 � �
�� 
���� as the state trajectory of the nominal system of (1) under
the control of the iterative DMPC with ���
�� � �

��
��.
Part I: In this part, we prove that the stability results stated in The-

orem 1 hold for 
��� � 
� �  ��� (recall that  �� is the smallest
integer satisfying ��� � "��!���) and all �� � !. By Propo-
sition 1 and taking into account that ���
�� � ���
��, the following
inequality can be obtained:

� ����
��� � 
��
��� � ��	�� ����
���� ����� ���	�� (13)

By Proposition 2 and taking into account that ���
� � ��� � ��
� �
���, ���
�� � ���
�� and �� �  ������ , the following inequal-
ities can be obtained:

����
��� ��
��� � �� ����

����
����� ��
����� � �� � ���� (14)

When ��
� � �� for all times (this point will be proved below), we
can apply Proposition 3 to obtain the following inequalities:

� ����
��� �� ���
��� � �� ��� �����

� ���
����� �� ����
����� � �� ��� � ����� (15)

From (13) and (15), the following inequality is obtained:

� ����
��� � 
��
��� � ��	�� ���
���� ����� ���	�

��� ��� ������ (16)

The derivative of the Lyapunov function of the nominal system of (1)
under the control of the iterative DMPC from 
� to 
��� is expressed
as follows for � � ���  ����:

�� ������� �
#� �������

#�
�������� �

�

���

���������

�
� �� �
�� �
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Adding the above equation and the constraints of (8f) in each LMPC
together, and reworking the resulting inequality, we can obtain the fol-
lowing inequality for � � ��� ����� by accounting for (3) and Propo-
sition 4:

�� ������� � �� ����� ����� 	



�
�� 	 �� 	���

� 
������ 	 � � �

	



�
�� 	 �� 	���

� 
�������

Integrating the above inequality from � � � to � � ���� and taking
into account that ������ � ������, ���	 � �� � ���� and the defini-
tion of 
����, the following inequality can be obtained:

� �������	�� � � �������	 � ������� 	 
�������� (17)

From (15), (16) and (17), the following inequality is obtained:

� ������	�� � �
��� ������������
� 
����	 
� �
� �����

	
� �
� ������ 	 
�������� (18)

In order to prove that the Lyapunov function is decreasing between two
consecutive measurements, the following inequality must hold:

����
 � 
� �
� ����� 	 
� �
� ������ 	 
������� (19)

for all possible � � �� � �. Taking into account that 
� , 
� and 
�
are strictly increasing functions of their arguments,��� is a decreasing
function of the delay �� and that if �� � � then �� � �
, then
if the condition of (12) is satisfied, the condition of (19) holds for all
possible �� and there exists �� � � such that the following inequality
holds:

� ������	�� � �
��� �������� ��� 
�� (20)

which implies that if ����� � ����� , then � ������	�� � � �������,
and if ����� � �� , then � ������	�� � 
�. Because the upper bound
on the difference between the Lyapunov function of the actual trajec-
tory � and the nominal trajectory �� is a strictly increasing function of
time, the inequality of (20) also implies that:

� ������ � �
��� �������� 
��� �� � ���� ���	�� (21)

Using the inequality of (21) recursively, it can be proved that if ����� �
��, then the closed-loop trajectories of the system of (1) under the
proposed iterative DMPC stay in�� for all times (i.e., ���� � ��� ��).
Moreover, it can be proved that if ����� � ��, ��� ���

���

� ������ � 
�.

This proves that ���� � �� for all times and ���� is ultimately bounded
in �� when ���	 � �� � ����.

Part 2: In this part, we extend the results of Part 1 to the general
case, that is, ���	� �� � ����. Taking into account that 
� , 
� and

� are strictly increasing functions of their arguments and following
similar steps as in Part 1, it can be readily proved that the inequality of
(19) holds for all possible �� � � and ���	 � �� � ����. Using
this inequality and following a similar line argument as in Part 1, the
stability results stated in Theorem 1 can be proved.

Remark 2: Note that in the case that the open-loop operation time
is larger than � 	 �� � �� , we may still apply the proposed DMPC
design but the closed-loop stability cannot be guaranteed, depending
on the open-loop process dynamic behavior.

IV. APPLICATION TO AN ALKYLATION OF BENZENE PROCESS

We consider an alkylation of benzene with ethylene process which
consists of four continuously stirred tank reactors (CSTRs) and a
flash tank separator and is modeled by 25 nonlinear ordinary dif-
ferential equations. Please see [11] for the detailed modeling of the
process. Each of the tanks has an external heat/coolant input. The

TABLE I
STEADY-STATE INPUT VALUES FOR �

TABLE II
MANIPULATED INPUT CONSTRAINTS

manipulated inputs to the process are the heat injected to or removed
from the five vessels, ��, �	, �
, �� and ��, and the feed stream
flow rates to CSTR-2 and CSTR-3, �� and �
. The states of the
process consist of the concentrations of benzene (�), ethylene (�),
ethylbenzene (�), and 1,3-diethylbenzene (�) in each of the five
vessels and the temperatures of the vessels. We consider a steady
state (operating point), �
, of the process which is defined by the
steady-state inputs ��
, �	
, �

, ��
, ��
, ��
 and �

, shown
in Table I. The steady-state temperatures in the five vessels are the
following: ��
 � ������ �, �	
 � ������ �, �

 � ������ �,
��
 � �������, ��
 � �������. The control objective is to regulate
the system from an initial state to the steady state. The initial tem-
peratures of the five vessels are: ��� � ������ �, �	� � ����
� �,
�
� � ������ �, ��� � ����
� �, ��� � ������ �. The first dis-
tributed controller (LMPC 1) will be designed to compute the values
of��,�	 and�
, the second distributed controller (LMPC 2) will be
designed to compute the values of�� and��, and the third distributed
controller (LMPC 3) will be designed to compute the values of �� and
�
. Taking this into account, the process model belongs to the class
of nonlinear systems: ����� � 
��� 	 �����	� 	 �	���		 	 �
���	

where the state � is the deviation of the state of the process from the
steady state, 	�� � �	�� 	�	 	�
� � ������
 �	��	
 �
��

�,
	�	 � �		� 			� � ��� � ��
 �� � ��
� and 	�
 � �	
� 	
	� �

��� � ��
 �
 � �

� are the manipulated inputs which are sub-
ject to the constraints shown in Table II. We use the same de-
sign of ���� as in [11] based on a quadratic Lyapunov function
� ��� � ���� with � being the following weighting matrix: � �

��
���
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
��. Based on
����, we design the iterative DMPC with the weighting matrices being
�� � ��
���
 
 
 
 
�
 
 
 
 
 
�
 
� 
� 
� 
� ���� 
 
 
 



�
 
 
 
 
 
�
��, ��� � ��
���
 	 
��� 
 	 
��� 
 	 
��� ��,
��	 � ��
���
 	 
��� 
 	 
��� �� and ��
 � ��
���
� 
���. The
sampling time of the LMPCs is chosen to be� � �� �.�		 is chosen
to be ����	���

	 for the distributed LMPCs and maximum iteration
number (i.e., � � ����) is used as the termination condition. In the
simulations, bounded process noise is considered.
We consider that the state of the process is sampled at asynchronous

time instants ������with �� � �� �. Moreover, we consider that there
are delays involved in the measurements with � � �� �. Measure-
ment delays can naturally arise in the context of species concentration
measurements. We will compare the proposed iterative DMPC with a
centralized LMPC which takes into account delayed measurements ex-
plicitly [14]. The centralized LMPC uses the same weighting matrices,
sampling time and prediction horizon as used in the DMPC. In order
to model the sampling time instants, a bounded Poisson process (see
[17]) is used to generate ������ and another bounded random process
is used to generate the associated delay sequence ������. We choose
the horizon of all the LMPCs to be� � � so that the horizon covers the
maximum possible open-loop operation interval (i.e., ��	� � �� �).
Note that the maximum possible open-loop operation interval only de-
pends on the frequency of measurement sampling and the delays in
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Fig. 2. Asynchronous time sequence �� � and corresponding delay se-
quence �� � with � � �� � and � � �� �: the �–axis indicates �� �
and the �–axis indicates the size of � .

Fig. 3. Trajectories of � ��� under ���� implemented in a sample-and-hold
fashion andwith open-loop state estimation, the iterativeDMPCwith 	 � �,
5 and the centralized LMPC.

Fig. 4. Total performance cost along the closed-loop system trajectories of cen-
tralized LMPC (dashed line) and iterative DMPC (solid line).

the measurements and is not related to the dynamics of the chemical
plant. Note also that, in terms of practical considerations, it is possible,
particularly in the context of species concentration measurements, for
the measurement delays to exceed 30 s and the use of a 40 s delay
upper bound for species concentration measurements is realistic from
a practical standpoint. Fig. 2 shows the time instants when new state
measurements are received and the associated delay sizes

Fig. 3 shows the trajectory of � ��� under different control designs.
From Fig. 3, we see that both the proposed iterative DMPC and the cen-
tralized LMPC are able to drive the system state to a region very close
to the desired steady state (� ��� � ���); the trajectories of � ���

generated by the iterative DMPC design are bounded by the corre-
sponding trajectory of � ��� under the controller ���� implemented in
a sample-and-hold fashion and with open-loop state estimation. From
Fig. 3, we can also see that the centralized LMPC and the iterative
DMPC with ���� � � give very similar � ��� trajectories.

Next, we compare the centralized LMPC and the iterative DMPC
from a performance index point of view. To carry out this comparison,
the same initial condition and parameters were used for the different
control schemes and the total cost under each control scheme was com-
puted as follows: � �

�

�
������

�
� �

���
�������� �� where

�� � ���� � is the final simulation time. Fig. 4 shows the total cost
along the closed-loop system trajectories under the iterative DMPC and
the centralized LMPC. For the iterative DMPC design, different max-
imum numbers of iterations, ����, are used. From Fig. 4, we can see

that as the iteration number � increases, the performance cost given by
the iterative DMPC design decreases and converges to a value which
is very close to the cost of the one corresponding to the centralized
LMPC. However, we note that there is no guaranteed convergence of
the cost of iterative DMPC to the cost of a centralized MPC because
of the non-convexity of the LMPC optimization problems, and the dif-
ferent stability constraints imposed in the centralized LMPC and the
iterative DMPC (Remark 1).
Finally, we compare the evaluation times of the various control de-

signs. The simulations are carried out by Java programming language
in aPentium 3.20 GHz computer. The optimization problems are solved
by the interior point optimizer Ipopt. We evaluate the LMPC optimiza-
tion problems for 100 runs. Themean evaluation time of the centralized
LMPC is about 23.7 s. The mean evaluation time of the iterative DMPC
with ���� � � is 6.3 s which is the largest time among the three LMPC
evaluation times (1.6 s, 6.3 s and 4.3 s). The mean evaluation time of
the iterative DMPC with ���� � 	 is 18.7 s with the evaluation times
of the three LMPCs being 6.9 s, 18.7 s and 14.0 s, respectively. From
the results, we see that the proposed DMPC leads to a reduction in the
evaluation time compared to the centralized LMPC though both pro-
vide a similar closed-loop performance. The results also imply that the
iterative DMPC may be applicable to processes which require smaller
sampling times to maintain closed-loop stability and for which central-
ized MPC is not a feasible option due to larger evaluation time.
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Integrated Design of Symbolic Controllers
for Nonlinear Systems
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Abstract—Symbolic models of continuous and hybrid systems have been
studied for a long time, because they provide a formal approach to solve
control problems where software and hardware interact with the physical
world. While being powerful, this approach often encounters some limi-
tations in concrete applications, because of the large size of the symbolic
models needed to be constructed. Inspired by on–the–fly techniques for ver-
ification and control of finite state machines, in this note we propose an al-
gorithm that integrates the construction of the symbolic models with the
design of the symbolic controllers. Computational complexity of the pro-
posed algorithm is discussed and an illustrative example is included.

Index Terms—Approximate bisimulation, digital control systems, non-
linear systems, on–the–fly design, symbolic models.

I. INTRODUCTION

Symbolic models of continuous and hybrid systems have been
studied for a long time, because they provide a formal approach to
solve control problems where software and hardware interact with the
physical world. Symbolic models are abstract descriptions of control
systems in which a symbolic state corresponds to an aggregate of
states. Several classes of dynamical and control systems that admit
symbolic models were identified during the last few years, see, e.g.,
[1], [12] and the references therein. In particular, incrementally
stable [2] nonlinear control systems were shown in [7], [10] to admit
symbolic models. This last result has been further generalized to
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incrementally stable nonlinear switched systems in [6], incrementally
stable nonlinear time–delay systems in [8], [9] and incrementally
forward complete nonlinear control systems in [15]. The use of
symbolic models for the control design of continuous and hybrid
systems has been investigated in [11], [14]. As discussed in [12], this
approach provides the designer with a systematic method to address a
wide spectrum of novel specifications, that are difficult to enforce by
means of conventional control design paradigms. Examples of such
specifications include logic specifications expressed in terms of linear
temporal logic formulae or automata on infinite strings. The use of
these specifications has been shown to be relevant in the control design
of important domains of application, including robot motion planning
and systems biology (see, e.g., [14] and the references therein). While
being powerful, this approach often encounters some limitations in
concrete applications, because of the large size of the symbolic models
needed to be constructed. In this note we propose one approach to cope
with this drawback. We consider a symbolic control design problem
for nonlinear control systems. Given a nonlinear control plant and
a specification expressed in terms of a finite automaton on infinite
strings, we face the problem of designing a symbolic controller that
implements the specification with arbitrarily good accuracy. The sym-
bolic controller is furthermore requested to avoid blocking behaviors,
when interacting with the plant. This problem can be viewed as an
approximate version of similarity games, as discussed in [12]. Related
control design problems have been studied in [11] and [14]. The first
contribution of this note lies in the derivation of an explicit solution to
the control problem under study. The symbolic controller is proven to
be the non–blocking part [3] of the approximate parallel composition
[12] between the specification automaton and the symbolic model of
the plant. The synthesis of such a controller requires the preliminary
construction of the symbolic model of the plant, which is generally
demanding from the computational complexity point of view. Inspired
by the research line on on–the–fly verification and control of finite
state machines (see e.g., [4], [13]), we give the second contribution
of this note consisting in an efficient algorithm that integrates the
construction of the symbolic model of the plant with the design of
the symbolic controller. Computational complexity of the proposed
algorithm is discussed and an illustrative example is included.

II. PRELIMINARY DEFINITIONS

Notation

The symbol ��� denotes the cardinality of a finite set�. The identity
map on a set � is denoted by ��. Given a relation � � � � �, the
symbol��� denotes the inverse relation of�, i.e.,��� � ���� �� �

� � � � ��� �� � � � ��. The symbols , , � and �
� denote

the set of integer, real, positive real, and nonnegative real numbers,
respectively. The symbol ��� denotes the infinity norm of � � �.
Given a measurable function � � �

� � �, the (essential) supremum
of � is denoted by ����. Given � � � and � � �, the symbols
	���� and 	������ denote the set �� � � 
 ��� � �� and the set
������� ������������� ������
 
 
� ������� �����, respectively.
Given 	 � � and � � �, we denote by 	� the set �� � � 
 �� �

��
	
 � � 	��. For any � � � and 	 � � the symbol ��
� denotes
the unique vector in 	 � such that � � 	��������
��.

A. Control Systems

In this note we consider the nonlinear control system

� �
����� � ������� ������ � � �

� �

��
� � 
��
(1)
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