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ABSTRACT

Current active leg prostheses do not integrate the most
recent advances in Brain-Computer Interfaces (BCI) and
bipedal robotics. Moreover, their actuators are seldom
driven by the subjects intention.
In this paper, assuming high-level commands reflecting
users intention are available (such as accelerate, decelerate
or stop), we propose an original and biologically-inspired
leg prosthesis control system. A Programmable Central
Pattern Generator (PCPG), which is able to model human
walk in a perfectly periodic way, generates the output
signal to control the prosthesis. One of the main interests
of that tool is the possibility to modify the walking pattern
learned at a middle speed and to adapt it to different
walking speeds in a smooth way.
What is proposed in this paper is to exploit this fea-
ture and increase the comfort of the patient thanks to
a specific tuning of the PCPG parameters relying on
real kinematics of a similar subject. The results of a
study for one subject are presented and we show how
to modify at best the PCPG parameters. A fourth-order
polynomial interpolation between the PCPG parameters
and the speeds provides good similarity indices between
real walk and generated patterns. The values of these
indices are presented for different walking speeds.
Keywords: BNCI, Electrooculography, Eye tracker, Hu-
man locomotion, PCPG, Prosthesis.

I. INTRODUCTION

Over the years, different kinds of leg prostheses
have been developed in order to replace the limb
that amputees have lost. The main objective of these
prostheses is to allow their user to walk as naturally
as possible. In fact, the complexity of human walk
is such that most of the leg prostheses available on
the market today use passive mechanisms. Although
these systems are functional, their performance is really
limited compared to a real human leg as they do not
have self-propulsion capability. Unfortunately, amputees

using this standard technology have to compensate for
these limitations. Consequently, they generally develop
various strategies which generate reduced locomotion
speed, a non-natural gait, considerable fatigue and
possibly harmful consequences like recurrent pain and
injuries at the interface between their residual limb and
the prosthesis. Active prostheses solve these problems
partially: powered by a battery-operated motor, they
move on their own and therefore reduce the fatigue
of the amputees while improving their posture. Two
main categories of active prostheses exist to date: firstly,
devices controlled according to the motion of other
healthy parts of the body and secondly, devices equipped
with a myoelectric control system. In the first category,
sensors are placed on the healthy leg of the amputee.
By analyzing the motion of the leg with a sophisticated
algorithm, the control system can identify the phase of
the gait cycle and trigger an actuator to appropriately
adjust one or more prosthetic or orthotic joints [1], [2],
[3]. Instead of exploiting the motion of the healthy leg of
the amputee, other systems analyze upper-body motions
to trigger and maintain walking patterns [4]. The second
type of active prostheses (or orthoses) is controlled by
myoelectric signals recorded at the surface of the skin,
just above the muscles. These signals are then used to
guide the movement of the artificial limb [5], [6], [7].
The improvement brought by the active prosthetic
technology with respect to conventional prostheses is
indisputable. However, several aspects still need to
be improved. For instance, an intuitive interface from
which user’s intent can be determined is still missing.
Additionally, no sensory feedback is provided to the
user. Active research is being carried out in these two
latter areas, in particular for arm and hand prostheses.
Complex nerve surgery techniques are being developed
as well as new signal processing algorithms and new
electrodes, in order to connect an amputee to an artificial
limb that he can control intuitively with his own residual
nerves and muscles [8]. Maybe one day amputees will
have the opportunity to fully recover human mobility



and perception, but paying the price of an important
and risky surgery. Thus more simple systems taking into
account the user’s intent are desirable in the meanwhile.

Recent researches in the field of Brain-Computer
Interfaces (BCI) based on EEG signals have considerably
increased the performances of such systems [9]. By
definition, a BCI is a device that enables communication
without movement. For a few years, research has allowed
the integration of such BCIs in games, to augment
interactivity of healthy users. BCI technology has also
offered new communication possibilities to severely
disabled people, by enabling them to move their mouse
or type an email just by thought. The non-invasiveness
of EEG signals represents the major advantage of this
technology. However, EEG signals are known to be
very noisy implying a very low Signal-to-Noise Ratio
(SNR) and, consequently, a low information transfer
rate. This low bit-rate leads to the impossibility to send
complex commands and the users are rather limited to
very high-level commands. Also, the consequence of
this low quality signal is the slowness and the lack of
reliability of some BCI-based applications [10].
Because of this restriction to high-level commands,
systems have to be developed to consider all the low-
level problems. This concept is used in robotics and is
called shared control [9]. In this case, both an intelligent
system and a human operator are in control of a device.
The aim of this system is to provide assistance to the
user, especially when the user can not do with his
abilities or with his command capabilities. Typically,
with high-level commands, a lower limb prosthesis can
not be entirely controlled. The prosthesis has to generate
a kind of standard pattern of walk whose frequency and
amplitude will be driven by the user. This prosthesis
could also manage obstacles and correct loss of balance.
Shared control has been successfully applied in several
applications based on EEG signals: an asynchronous
wheelchair control [11], a walking robot [12] and a hand
grasping system [13].
To control the wheelchair, the patient had to modulate
his EEG signals by creating three different mental states
(imagination of a left hand movement, word associations
and relaxation) leading to three commands (turn left, turn
right and move forward). To control the walking robot,
a P300 paradigm generated high-level commands and
the robot executed all the low-level commands needed to
accomplish the actions. Finally, hand grasping was made
possible thanks to functional electrical stimulation and
detection of foot movement imagery in the EEG signal
which activates the correct phase of the process (i.e.
grasping and releasing an object).

For decades, neuroscientists have studied the brain
activity related to movements. They have shown that
precise movements like grasping are directly controlled
by the brain [14]. In recent experiments with monkeys,
it was demonstrated that a mathematical link exists
between reaching and grasping movement characteristics
(direction, speed) and the electrical signals recorded by
electrodes implanted in the motor cortex [15].
It is now established that locomotion differs from this
scheme and is actually governed by a hierarchical
system [14]. At the lowest level of this system are found
the Central Pattern Generators (CPGs). Studies with cats
have revealed that their gait is generated by those CPGs
which are located in the spinal cord. A CPG is composed
of motoneurons linked together that can generate periodic
patterns whose frequencies are controlled by the brain.
To prove this concept, scientists have sent impulsive
periodic signals in a specific area in the brain stem
called Mesencephalic Locomotor Region (MLR) [16].
They found that the frequency of this stimulation signal
determined the speed of cat’s walk. By increasing the
stimulation frequency, they could even make the cat
trotting instead of walking.
This mechanism has inspired the field of robotics,
particularly in the development of small autonomous
walking robots and prostheses [17]. One of the algorithms
developed in this framework is called Programmable
Central Pattern Generator (PCPG) [18]. A PCPG
algorithm is able to generate any periodic pattern after
a learning step. The interest of such a system lies
in the controllable aspect of the learned parameters.
Actually, the pattern magnitude and frequency are easily
adjustable. A modification of one of these parameters
will lead to a smooth transition of the PCPG output. This
is a particularly interesting feature, which is especially
important for prosthesis applications and their actuators.

In this framework, this paper presents preliminary
results about modeling human walk by a PCPG in order to
control a prosthesis by high-level commands. In Section
2, the bases of Programmable Central Pattern Generators
to learn a standard pattern and to generate patterns at the
wanted speed are presented. In Section 3, results for one
subject are exposed.

II. PCPG DESCRIPTION

For the last two decades, models of Central Pattern
Generators (CPGs) have been increasingly used to
control the locomotion of autonomous robots, from
multi-legged insect-like robots to humanoids [16].
Indeed, locomotion is a quasi-periodical phenomenon
and it can be modeled by using such systems of coupled
nonlinear oscillators. Interestingly, different gaits of
animals could be simulated and reproduced with diverse



walking robots. Contrary to usual CPG oscillators, the
learning of Programmable Central Pattern Generators
(PCPGs) is very easy and avoids challenging and heavy
parametrization. Furthermore, this oscillating system is
able to change the frequency and magnitude of any given
periodic walking pattern it has learned in a smooth way
and is robust to noise and to perturbations [18].

A PCPG is a kind of Fourier series decomposition
and is composed of several adaptive oscillators. This
algorithm is governed by the following equation system:
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As depicted in Figure 1, oscillators are coupled between
each other compared to an origin phase based on theRi

coupling parameters derived from the phase information
φi. They are composed of adaptive magnitude coefficients
αi and frequency parametersωi (ri = (x2

i
+ y2

i
)

1

2 ). µ has
a role of normalization of the learned pattern. The other
parametersγ, ǫ, τ aim at accelerating the convergence
while limiting stability problems. TheQlearned(t) signal
resulting from the sum of oscillator outputs is compared
to the Plearned(t) walking pattern target and the error
value F (t) is computed. Throughout the learning step,
all the parameters of the PCPG are modified in order to
minimizeF (t). When this learning step is finished,F (t)
is close to zero and the system is generating the right
pattern at theQlearned(t) output.

Properties of PCPGs make them suitable for trajectory
generation in robotics and also for prosthesis applications.
In fact, the pattern learned by a PCPG can be easily
controlled in magnitude and in frequency thanks to a
simple linear change of the~ω and~α vectors representing
the ℜN PCPG states (N is the number of oscillators).
This linearity leads to a smooth change of the global sys-
tem behavior. Figure 3 depicts the various modifications
relevant for prosthesis control purposes. For instance, if
the ~ω vector is divided by two, the underlying frequency
of the standard temporal pattern is divided by two. The
same effect occurs for the~α vector.

Fig. 1: The PCPG is able to learn the frequency components of
a periodic signal as well as the various phases and magnitudes.
The main interest of PCPGs is the possibility to modify a learned
pattern in amplitude or frequency in a smooth way. This Figure
is inspired from [18].
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Fig. 2: The PCPG is able to learn perfectly a standard pattern
of walk by means of 7 oscillators.

III. HUMAN WALK MODELED BY A PCPG

In this section, we demonstrate that human walk can
be learned by a PCPG and subsequently generated at
different walking speeds. This aims at controlling a foot
elevator orthosis useful for people affected by strokes
and who are unable to elevate their feet. This system is
shown in Figure 6.

In order to train the PCPG, three standard walking
patterns were used. These temporal patterns consist of
the angle of elevation of the foot, the thigh and the shank
of a healthy subject walking on a treadmill at 3 km/h,
a typically medium speed for humans. The elevation
angles were computed using the positions of 23 passive
markers disposed on the subject, determined thanks to
six Infrared Bonita Vicon cameras.
The standard walking patterns were obtained by averaging
about 50 walking cycles, determined and synchronized by
a peak detection algorithm able to locate all the relevant
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Fig. 3: The output of the PCPG can be controlled in magnitude
(top) and/or in frequency (bottom) in a smooth way.

maxima and minima angle values of the kinematics
recordings as depicted in Figure 4. Here, the patterns
were synchronized by the maxima because of a clearer
peak. The kinematics data were recorded for each leg
during 60 seconds at 100 Hz. Each standard pattern
is thus a kind of average pattern along the 60-second
recordings. After determining these standard patterns, the
PCPG was trained using the procedure described in [18].
Figure 2 shows how well the PCPG is able to reproduce
the standard pattern of the foot elevation angle using 7
oscillators.

What is proposed in this paper is to generate walking
patterns with the PCPG in a way differing from the
bipedal robots described in the literature which consists
in walking so far as possible without taking into account
the potential patient itself. Indeed, one of the main goals
in prosthetics is to provide the user with the most com-
fortable walk possible. Therefore, at each step, the pattern
should be adapted in terms of frequency and magnitude,
i.e. respectively the stepping frequency and stride-related
length between two heel strikes whatever the walking
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Fig. 4: Local maxima and minima allow synchronization while
averaging walking cycle. In this study, the maxima are used.

speed. Kinematics data were thus recorded with the same
subject and apparatus for 10 different speeds, from 1.5
to 6 km/h, by step of 0.5 km/h. The normalized and
centered pattern learned by the PCPG for the speed of 3
km/h and generated for all the other speeds were manually
calibrated (by tuning the magnitude and frequency param-
eters) in order to fit the standard walking patterns of all
speeds. By this procedure, we found a mathematical link
between the PCPG amplitude and frequency parameters
(the ~α and ~ω vectors) as a function of the walking
speed. This link was established by computing a fourth-
order polynomial interpolation function at the least mean
square sense. Figure 5 shows results obtained for one
subject. One can notice that the subject increases his
walking speed at first by extending his stride length, and
then by increasing his stepping frequency. This confirms
results described in [19]. It has to be emphasized that
this interpolation can be computed specifically for any
subject, increasing therefore the precision and adequacy
of the prosthesis control at each step.
Moreover, as BCI is far from working perfectly, a con-
fidence level of the command could be derived and
integrated in the speed parameter change. Considering
that anacceleratecommand increases the actual speed
of 0.5 km/h by default, if the decision is uncertain, e.g.
reliable at 75 %, 75 % of the speed increase can be
actually performed thanks to the parameter interpolation.

To prove the relevancy of this approach, a Similarity
Index (SI) was assessed between the PCPG outputf1(t) at
the right speed with the exact parameters and the standard
walking patternf2(t) at each speed to show the true
potential of this method. This index is defined as:

SI =

∫
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Fig. 5: Evolution of the foot pattern frequency (top) and
amplitude (bottom) as a function of the walking speed. The
interpolation is performed for 10 walking speeds with a 4th-
order polynomial function. Error bars in amplitude show the
high magnitude variability of each gait cycle. Similar results
are derived from the shank and thigh patterns.

where T is the period of the limit cycle,f1(t) and
f2(t) being synchronized at the origin. Note that if both
functions are identical,SI = 1.
Those indices computed over all recorded speeds and
depicted in Figure 7 show a logical degradation while
keeping away from the PCPG learned speed. However,
the dissimilarity is not so important and SI values never
drop below 93 %.
An alternative to improve this procedure which relies on a
single PCPG could be to manage a multi-PCPG system;
each PCPG will model a typical range of speeds, e.g.
0.5-2 km/h where SI are sufficiently high compared to the
level of requirements. The merging of those PCPGs would
be used to model as perfectly as possible real walk while
making the change of PCPG as smoothed as possible.

Fig. 6: Foot elevator orthosis aims at elevating the foot after the
toe off.
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Fig. 7: Similarity indices show that further the generated speed is
from the learned speed, the worse is the result although, globally,
the results are always good.

IV. CONCLUSION AND FUTURE WORK

In this paper, a way to model human walk to drive a
lower limb prosthesis given a Brain-Computer Interface
output is explained. Considering high-level commands
provided by the BCI and after learning average walking
patterns (angles of elevation of the different parts of the
leg as a function of time), a PCPG provides an adaptive
kinematics output to drive the artificial limb, according
to the walking speed desired by the user. Unlike current
sophisticated active prostheses, the user’s intent is fully
taken into account in this case.



It is demonstrated that a PCPG is able to learn almost
perfectly average human walk patterns. Moreover, it is
shown that a four-degree polynomial function can model
the evolution of the PCPG parameters as a function of
the walking speed. This interpolation enables to drive
the prosthesis in a smooth way during accelerations or
decelerations, increasing thus the comfort of the patient.
This also paves the way to integrate a confidence level
of the high-level command. If the command is uncertain,
a smaller gap in speed is actually performed than in the
certain case.

Future work will be dedicated to extend this study to a
larger group of subjects. Another work will be to create a
multiple PCPG-based walk modeling. This system could
be composed of several PCPGs able to model walk around
a central speed. For example, one PCPG will model low
speeds, middle speeds, high speeds or running speeds. An
important verification will be to ensure the smooh speed
change of the PCPG output.
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