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Abstract— In recent years, gait robots have become increas-
ingly common for gait rehabilitation in non-ambulatory stroke
patients. Cardiovascular treadmill training, which has been
shown to provide great benefit to stroke survivors, cannot
be performed with non-ambulatory patients. We therefore
integrated cardiovascular training in robot-assisted gait therapy
to combine the benefits of both training modi. We developed a
model of human heart rate as a function of exercise parameters
during robot-assisted gait training and applied it for automatic
control purposes. This structural model of the physiological
processes describes the change in heart rate caused by treadmill
speed and the power exchanged between robot and subject. We
performed physiological parameter estimation for each tested
individual and designed a model-based feedback controller to
guide heart rate to a desired time profile. Five healthy subjects
and eight stroke patients were recorded for model parameter
identification, which was successfully used for heart rate control
of three healthy subjects. We showed that a model-based control
approach can take into account patient-specific limitations of
treadmill speed as well as individual power expenditure.

I. INTRODUCTION

During gait rehabilitation of stroke survivors, cardiovas-

cular training can be of great benefit to the patient [1].

Depending on the degree of impairments caused by the

lesion, this training is performed either on treadmills for less

severe cases or on stationary bicycles in severely affected

patients. Particularly non-ambulatory patients cannot exercise

on treadmills, but must use stationary bicycles, where the

problems of coordination and balance during walking do not

need to be taken into consideration.

Besides cardiovascular training, coordinative gait training

play a major role in rehabilitation of stroke survivors [2].

Gait robots such as the Lokomat [3], the WalkTrainer [4]

and the LOPES robot [5] allow even non-ambulatory patients

to exercise walking by guiding the legs of the patient on

a walking trajectory and were shown to cause significant
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improvement of gait function in patients suffering from

stroke [6], [7].

Today, cardiovascular gait-training with robotic assistance

has not been used with neurological patients, as patients can

be too impaired to walk on a treadmill at speeds which would

permit control of heart rate (HR). The present work is an

effort to integrate cardiovascular training into robot-assisted

gait training with the goal to combine the benefits of both

training modi and to make gait training more efficient.

While treadmill-based HR control is well established in

healthy subjects [8]–[10], none of these approaches can be

used in stroke patients during robot-assisted gait training,

as they do not address three major differences compared to

standard treadmill walking. First, for patient safety, treadmill

speed during robot-assisted rehabilitation training is typically

limited to very slow walking speeds and does not allow fast

walking or running. The Lokomat gait orthosis for example

is limited to 3.2km/h, which is low compared to previous

approaches, where HR control was performed with walking

speeds starting at 3.6 km/h [10]. Second, for facilitation of

stance, the patient can be body weight supported, which will

decrease HR with increasing body weight support (BWS)

[11]. And third, all gait robots use actuators to provide

supportive guidance force (GF) in order to enable the walking

movement in patients with little leg force or little coordina-

tive capabilities. This GF can be expected to alter HR, as it

decreases the energy required by the subject to perform the

walking movement.
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Fig. 1. The Lokomat gait orthosis. Left: Motors at hip and knee produce
torques which move the subject’s legs on a gait trajectory. The ankles are
not actuated but kept in dorsiflexion to prevent foot drop (photo courtesy
of Hocoma AG.). Right: schematic drawing of the orthosis. Potentiometers
sense the position of the orthosis hip and knee joint, force sensors in series
with the motors sense the interaction force between Lokomat and human.
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Taking these challenges into account, we first developed

a structural model of physiological processes, describing the

change in HR caused by changes of the Lokomat’s treadmill

speed, supportive force and the amount of BWS. We then

estimated the physiological parameters of the model and

designed a model-based feedback controller to guide HR to

a desired time profile during Lokomat walking.

II. DEVELOPMENT OF A HEART RATE MODEL

To develop a model of HR as a function of robot-assisted

gait training, we first analyzed the settings of a gait robot,

which would influence HR. As power expenditure of a

subject was shown to have major influence on HR, we

analyzed the power exchange between an exoskeleton gait

robot and a subject. To parameterize a model, we then

performed one experiment with five healthy subjects and two

experiments with a total of eight stroke patients.

A. Power exchange during Lokomat walking

During robot assisted gait training, the robot can exert

large forces onto the patient’s legs to guide them on a

reference trajectory. This power exchange between the device

and the patient has a major effect on the HR. At high GFs,

i.e. with a stiff impedance controller, the patients have the

possibility to walk actively, i.e. pushing into the orthosis with

high forces, or behave passively, letting the robot move their

legs.

We consider the torques exchanged between human and

orthosis as the dominant port for power exchange in the

system of Fig. 1. Due to the sensor placement in the

Lokomat, we can only record the torques exchanged between

the Lokomat’s drives and the exoskeleton. Using the recorded

gait trajectory, we can compute the torques necessary to

move the exoskeleton on this trajectory and subtract these

from the recorded torques. This permits us to determine the

torques and thereby the power exchanged between Lokomat

and human.

The power in the Lokomat during walking (PLokomat) can

be computed as

PLokomat = τT q̇, (1)

where τ = [τhip left τknee left τhip right τknee right]
T is

the interaction torque between the human and the Lokomat

and q̇ = [q̇hip left q̇knee left q̇hip right q̇knee right]
T is

the angular velocity of the orthosis. This power gives an

indication how active the human is. Positive values indicate

that the human walks actively and the Lokomat has to brake.

Negative power means that the Lokomat assists the human.

B. Model identification in healthy subjects

Parts of model identification in healthy subjects have

been reported previously and are briefly repeated here for

the sake of clarity [12]. The electrocardiogram (ECG) was

recorded in five healthy individuals to define a model for the

cardiovascular process of subjects during Lokomat walking

(3 m and 2 f, 25.0 yr ± 2.3, 77.2 kg ± 8.0). The ECG

was recorded with a gTec (www.gtec.at) amplifier, sampled

at 512 Hz, filtered with a 50Hz notch filter and bandpassed

with a 20-50Hz Butterworth filter of 4th order. HR was then

extracted in real time using a custom steep slope detection

algorithm. All software was implemented in Matlab 2008b

(www.mathworks.com). The study protocol was approved by

local ethics committees and subjects gave informed consent.

We varied the three Lokomat parameters: treadmill speed,

GF and BWS. For experiments in healthy subjects, we imple-

mented a velocity-dependent friction force for investigation

of effects of changes in power expenditure. Friction was

computed as

Ffriction = αv2TM (2)

where v2TM is the treadmill speed and α is a scaling factor.

The friction caused additional power expenditure adding up

to the expenditure related to walking. Subjects walked at

three walking speeds [1, 2 and 3 km/h], three GFs [0%,

50% and 100%], three different levels of BWS [0%, 30% and

60%] and three different levels of friction (α = 0, 0.5 and 1).

Note that a GF of 100 % meant a maximally stiff impedance

controller and 0 % a fully transparent orthosis. Maximal gait

speed of 3 km/h was chosen, as the Lokomat is limited to 3.2

km/h for patient safety. Details on the experimental protocol

can be found in [12].

The dependency between walking and HR of healthy

subjects has been previously investigated. Increases in tread-

mill speed were shown to linearly increase HR [13]–[16].

This can be interpreted as lowpass-like reaction to a sudden

increase of oxygen demand, which we modeled as a first

order delay (PT) element ( k
τs+1 ). Treadmill acceleration

resulted in an overshoot in HR before steady state was

reached [13], [14], [17]. An undershoot was observed after

a negative acceleration. Holmgren reported a drop in arterial

pressure that reached its minimum 10 seconds after onset of

exercise [18]. The HR overshoot might be caused by a first

overreaction of the cardiovascular system to compensate for

the blood pressure drop. Feroldi et al. argued that the over-

shoot might be a result of changes in the balance between

sympathetic and parasympathetic activity [19]. The overshoot

and undershoot behavior was modeled as a second order

derivative (DT) element ( ks
(s+τ)2 ). The power expenditure of a

subject during exercise on a bicycle ergometer [20]–[22] and

during arm cranking [21] was reported to correlate linearly

with HR. Therefore, the power expenditure of the human

was taken as a linear input parameter modeled as a first

order PT element. After longer training durations a fatigue

effect, which resulted in increased resting HR, was observed

and described by several researchers [10], [13], [14]. We

modeled this as a first order lowpass element. This resulted

in a model with five scaling factors and six parameters.

Estimation of the the scaling factors and parameters

for each subject were done using a genetic algorithm in

combination with a gradient descent optimization, as we

wanted to explore the whole parameter space for solutions.

Validation of the model was performed with a velocity profile

different from the one used for model identification (Fig. 2).

The goodness of fit was assessed with the coefficient of
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determination, R2.

For real-time HR control, we needed to repeat the iden-

tification of the subject specific parameters at each training.

We performed an online identification of subject specific

parameters, optimizing only over the first 12 minutes of the

speed profile in (Fig. 2). After the first 12 minutes, the model

parameters were fixed and used for HR prediction during

training sessions of 37 minutes.

C. Model identification in patients

We performed parameter estimation with eight chronic

stroke patients (3w, 5m, 51.3y ±10.7, all hemi-paretic), all

with a Functional Ambulation Classification (FAC) score of

0, by looking at steady state increases in HR from baseline

HR measured during standing. Investigating GF, treadmill

speed and BWS at three different settings as done for healthy

subjects would take 27 conditions each several minutes long.

As patients can usually exercise around 30 to 45 minutes in

the Lokomat, we split up our investigations into two patient

groups (experiment I and II). The experimental protocol

started with three minutes of standing baseline recording,

followed by 5 minutes walking in the Lokomat to get

acquainted to the machine. The conditions were presented in

randomized order, with a condition length of three minutes,

which was in pre-tests found to be a good tradeoff between

experimental time and reaching steady state of HR. Ethical

approval was obtained by the local ethics committee and all

subjects gave informed consent. Although we did not plan on

varying BWS during HR control (see Discussion), we still

investigated its effects on HR for theoretical purposes.

In a first set of experiments (experiment I), four stroke

subjects walked at two walking speeds [1.5 and 2.5 km/h],

two levels of GF [50% and 100%] and two levels of un-

loading to [30% and 60%]. This resulted in eight conditions

plus one baseline condition while standing in the Lokomat.

Lower settings for walking speed were reported to feel

uncomfortable by patients; 0% GF was not investigated, as

only one patient was able to walk at less than 30% GF;

higher values of BWS were not investigated, as they are not

used in a clinical setting. Friction force, as used with healthy

subjects for increase of power expenditure, was also not used

as it would resist the GF provided by the Lokomat.

We performed a second set of experiments with four

different stroke subjects (experiment II), to obtain additional

data points for different treadmill speeds and unloadings.

Investigation of GF changes were not included as a result

of experiment I, as changes in GF did not cause changes in

HR (see Results section). Treadmill speed was set to [1, 2

and 3 km/h] and BWS to [30%, 45% and 60%]. Walking

speeds higher than 3 km/h were not investigated for patient

safety; lower levels of BWS could not be chosen as the ones

of healthy subjects, as no patient was able to walk at 3 km/h

with less than 30% BWS. Experiment II had nine conditions

plus one baseline condition with condition length set to 3

minutes. All results were computed as percent change in HR

from baseline standing.

III. MODEL PREDICTIVE CONTROL

A. Problem setup

We used model predictive control (MPC) for closed loop

HR control, as the MPC controller can predict HR based on a

provided model. These predictions can predict HR constraint

violations based on the model, in which the HR would

rise over a desired maximal HR, before these situations can

actually occur. The MPC can also limit treadmill speed, BWS

and GF to be bound not only within the robot’s safety limits,

but it can also be configured to change the robot’s parameters

within safe, patient-adapted ranges. Also, the relationship

between HR and power output (computed from angular

velocity and torque exerted in the robot), can be used as

a measured disturbance to improve controller performance.

B. Controller plant model

The Lokomat would allow manipulation of the patient’s

HR via treadmill speed, GF and BWS (Fig. 1, left), which

would make the control problem a ”multi input single output”

(MISO) problem with HR as output variable. As a result

of experiment I, we did not use GF as a control variable,

as it did not significantly impact HR (Tab. I). Because of

therapeutic reasons, we did also not use body weight as a

control variable (see Discussion for details).

Using the model identified in equation 4, We validated that

the HR model developed for healthy subject did hold for the

patient data recorded in experiment I and II. We split the

model up into a plant and a disturbance model and used the

power measurement in equation 1 as a measured disturbance.

C. Experimental setup and controller evaluation

Using the model developed in chapter II in combination

with the controller developed in III-B, we performed HR

control in three healthy subjects. Subjects (2 m. and 1

f., 28.4 y ± 5.1) walked in the Lokomat at 30% BWS.

The desired HR was set to the profile between 70 and 90

beats per minute (bpm), (as depicted in figure 3, A). As

changes in treadmill speed between [0, 3] km/h would not

have elicited a HR as high as 90 bpm, we turned off GF

and enabled friction force as in eq. 2. Mean and standard

error (STE) of HR were computed to quantify controller

performance. Althought the model incorporated transient

TABLE I

RESULTS OF CHANGES IN GF FOR ALL PATIENTS IN EXPERIMENT I.

PERCENT CHANGE IN HR FROM BASELINE, WHERE BASELINE WAS SET

TO 100%

GF [%]

BWS vTM 50 100

30 1.5 131 ± 5 130 ± 6

30 2.5 117 ± 3 116 ± 7

60 1.5 115 ± 2 119 ± 3

60 2.5 113 ± 2 111 ± 2

BWS: body weight support, vTM : treadmill speed
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TABLE II

SUMMARY OF ALL HR CHANGES CAUSED BY BWS AND TREADMILL

SPEED FOR ALL PATIENTS IN EXPERIMENT I AND II. PERCENT CHANGE

IN HR FROM BASELINE, WHERE BASELINE WAS SET TO 100%.

BWS [%]

vTM 30 45 60

1 114 ± 1 106 ± 3 103 ± 1

1.5 131 ± 5 n.a. 116 ± 3

2 108 ± 3 107 ± 1 102 ± 2

2.5 117 ± 2 n.a. 114 ± 2

3 112 ± 3 109 ± 1 108 ± 3

BWS: body weight support, vTM : Treadmill speed

dynamics, we wanted to quantify the controller’s ability to

perform cardiovascular training, i.e. driving HR to a desired

steady state. We therefore computed mean and STE over the

last 60 seconds of each condition.

IV. RESULTS

A. Model identification

Neither healthy subjects nor patients showed an increase of

HR for changes in GF (Tab. I). We therefore did not include

GF in our HR model. Healthy subjects also did not react to

changes in BWS, but only for changes in treadmill velocity

and friction. In patients, BWS allowed increasing/decreasing

HR by up to 31% (Tab. II). However, for therapeutic reasons,

we set BWS constant and did not include it in the model (see

Discussion for details). Therefore, the model only included

the influence of treadmill speed and power output. HR was
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Fig. 2. Predicted and recorded HR of one healthy subject subject (A)
and Lokomat treadmill velocity profile (B) for model verification. HR was
recorded for the first 12 minutes. From this data, the model parameters
were computed and fixed. From minute 12 on, the model predicted HR in
real-time.

computed as an increase from baseline

HR = HRBaseline +∆HR (3)

with ∆ HR = overshoot dynamics + undershoot dynamics +

power expenditure + fatigue as described in section II B. The

overall HR model for healthy subjects was parameterized as

∆HR = sk1vTM

s2+τOSdOS+τ2

OS

+ sk2vTM

s2+τUSdUS+τ2

US

+k3vTM+k4P
τfasts+1 + k5P

τslows+1 (4)

with P being the power exchanged between human and

Lokomat, τOS and τUS the time constant of overshoot (OS)

and undershoot (US) respectively, τfast and τslow the time

constants of the fast and slow dynamics and ki, i ∈ [1, 4] are

the scaling factors.

In the model (eq. 4), four of the five scaling factors were

found to be subject-dependent, the other parameters were

distributed within ±10% of their respective mean values and

were therefore set to the mean [12]. The constant parameters

were τslow = 575.03, τOS = 0.0575, dOS = 1.0094, kUS =

0.1445, dUS = 1.0010, τUS = 0.0302.

B. Heart rate responses of healthy subjects and patients

The model for treadmill velocity and power expenditure

during robot-assisted gait rehabilitation successfully pre-

dicted the HR of healthy subjects with an R2 of 0.80±0.15

if the parameter optimization was performed over the whole

dataset, and with an R2 of 0.79±0.14 when the parameter

optimization was performed on the first 12 minutes of data.

The R2 value of the later case refers only to the predicted

data from minute 12 on (Fig. 2). Whenever healthy subjects

did not respond to increases of treadmill speed with increases

in HR during model identification, we obtained a low quality

of HR prediction.

Within the class of responders, we found decreasing

HR for decreasing BWS. Contrary to clinical observations

informally reported by physiotherapists, we found no change

above or below the normal HR fluctuation for changes in

GF (Tab. I). Linearizing the system for control purposes, the

plant model of eq. 4 simplified to

A =





−2 τOS k1 −τ2OS 0
1 0 0
0 0 −1

τfast



 B =





1
0
k2

τfast





C =
(

k1 0 1
)

D =
(

0
)

where k1 and τOS are the gain and time constant of the

overshoot dynamics and k2 and τfast are the gain and time

constant of the fast dynamics describing the dependency

between treadmill speed and HR increase. This system is

controllable and observable for ki 6= 0 and τOS 6= 0.

C. Heart rate control

The results of HR control in the three healthy subjects

(see Experimental setup) are summarized in Fig 3. It has to

be noted that HR of healthy subjects fluctuated in average
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Mean:                           80.7                                       89.3                     69.2
Standard error:              1.5                                         1.1                       1.6

50 100 200 250 300 400 450 500
60

70

80

0

1

2

3

time [s]

H
e

a
rt

 r
a

te
 [

b
p

m
]

T
M

 s
p

e
e

d
 [

k
m

/h
]

90

350150

A

B

P
o

w
e

r 
[W

]

C

100

50 100 200 250 300 400 450 500350150

50 100 200 250 300 400 450 500350150
0

10

20

30

Subject 1
Subject 2
Subject 3A BRecorded HR

Desired HR
MPC controller signal C Power

Fig. 3. A: HR of three healthy subjects controlled to a desired reference
trajectory. HR is plotted filtered (4th order Butterworth filter, cut-off at 0.8
Hz) to remove short term HR variability and show the underlying trend. The
controller results (mean and standard error of the last 60 seconds, i.e. steady
state of each condition) are displayed to quantify the controller quality. B:
control signal to the treadmill of all three subjects. C: power expenditure
of all three subjects.

by ± 4 bpm during standing and ± 3 bpm during walking.

The controller was able to control HR to the desired values

of 80, 90 and 70 respectively within the limits of these HR

fluctuation. To mimic the training situation in which patients

exercise, we limited the treadmill speed of the Lokomat to 3

km/h. Trying to control the subjects to 90 bpm, the control

signal saturated. The maximally reachable HR was limited

by the patient’s HR at maximal treadmill speed.

V. DISCUSSION

We integrated HR control into robot-assisted treadmill

training, as cardiovascular training was shown to be ben-

eficial for stroke patients [1]. To achieve HR control as a

function of the exercise parameters power expenditure and

treadmill velocity, we developed a model of human HR dur-

ing robot-assisted treadmill training and applied it for control

purposes. A controller which stabilizes HR at a desired value

opens the possibility of personalized cardiovascular training

in the early phase of gait rehabilitation after stroke.

A. Influence of guidance force and treadmill speed on HR

Decreasing GF and increasing treadmill speed would have

been expected to lead to an increase in metabolic cost and

therefore to increase HR [21]. Surprisingly, changes in GF

did not alter HR in healthy subjects and patients, and HR

at treadmill speeds of 1.5 km/h were increased compared to

HR at 2.5 km/h in patients (Tab. I). Both results are counter-

intuitive.

A possible explanation for the GF results could be that

decreased GF did increase metabolic cost, but allowed the

subjects a larger step length, as they could deviate from the

predefine trajectory. Larger step length could in return have

decreased effort and kept the the overall energetic cost of

walking constant.

The increase in HR for low gait speeds was informally

confirmed by patients, who reported low gait speeds to be

more exhausting than faster gait. This might have to do

with the effects of leg’s vein pumps, which can support the

cardiovascular system better at higher gait speeds. Prelimi-

nary results of gait speeds up to 4.5 km/h in the Lokomat

showed, that HR did increase monotonic between 2 km/h

and 4.5 km/h. These higher gait speeds were not available

at the time of the experiments. However, this finding will

necessarily influence the design of HR control experiments

in neurological patients and will require enforcing a lower

limit of 2km/h on gait speed.

B. Comparison to other control approaches

HR control has been successfully demonstrated using other

control techniques like PID or H∞ control in healthy subjects

using Hammerstein models [10]. However, our approach

differs from the approaches above in its usability with

severely affected stroke patients. In our model, the power

exchange with the Lokomat accounted for up to 75% of the

predicted increases in HR. Compared to PID, MPC enabled

us in a straightforward way to include the influence of power

expenditure in our controller. Additionally, walking speed in

Lokomat is currently limited to 3.2 km/h, which severely

limits the possibilities of HR control. Previous approaches to

HR were performed at walking speeds starting at 3.6 km/h

[10], which is already above the maximal possible Lokomat

walking speed. From that point of view, the increase in HR

of 20 bpm in healthy subjects only presents a hurdle for the

current version of the gait robot Lokomat. As studies have

found high walking speeds to be most beneficial for patients

recovering after stroke [23], future gait rehabilitation robots

might allow higher maximal walking speed, which might

improve results achieved with our approach.

Controlling HR of healthy subjects to 90 bpm (Fig. 3),

volitional pushing effort might have increased power expen-

diture of subjects and thereby HR even further. However,

our approach was explicitly designed for stroke patients

with severe impairments that do not have the cognitive or

biomechanical ability to perform task oriented, voluntary

movements. While HR control via active, voluntary pushing

effort might have worked better than MPC, it would require

cognitive understanding of the task as well as the biome-

chanical ability to voluntarily push against the orthosis.

C. Control variables for heart rate control in patients

Although HR control could have been improved by vary-

ing not only treadmill speed but also BWS, we decided not

to use BWS as a control variable. Increased BWS reduces
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the loading the patient has to carry during walking. High

loading of the patient during treadmill training was shown

to be a key factor for rehabilitation success [24], [25]. In

order to maximize the quality of coordinative training, it was

decided to set BWS patient-specifically to a fixed minimal

value. Minimum BWS was identified for each patient indi-

vidually by decreasing unloading at maximal walking speed

in steps of one kg. Minimum BWS was set right before

the gait pattern degraded visibly as rated by the attending

physiotherapist. The loading was then kept constant over

the whole training session. This approach reduced control

variables to the treadmill speed.

Not all patients could be classified as responders to our

intervention. It was not possible to clearly identify a clinical

indicator that would predict pre-training whether or not the

patient would react. Beta blocking medication, which is

known to decrease HR variability and limit the adaptation of

HR to physical stress [26], was ruled out as a reason. Post

hoc analysis of power expenditure could also not explain

the observed phenomena. In stroke survivors, medullar brain

stem and hemispheric infarctions were shown to impair

autonomic cardiovascular regulation [27]. Patients with these

diagnoses should be excluded from HR control in future

trainings.

D. Heart rate control

HR control was well possible in healthy subjects within

the bounds imposed by limiting the treadmill speed to values

between [0, 3.2] km/h. From a clinical point of view, the

necessity to re-identify each subject anew is currently the

largest drawback of our approach, as the identification phase

can take up to 12 minutes (Fig. 2, bottom). These 12 minutes

would significantly shorten the Lokomat therapy. With four

parameters, an automatic learning algorithm might be used

to identify the parameters automatically in the beginning.

Although

VI. CONCLUSION AND OUTLOOK

We were able to show that a model-based control approach

can take subject specific limitations on treadmill speed as

well as individual power expenditure into account. Our

approach is limited to subjects who show increased HR for

increases in treadmill speed. The next step will be to perform

model based HR control in neurological patients.
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