AAMRL-SR-90.517


# OPTIMIZED FORWARD KINEMATICS FOR THE MBA EXOSKELETON AND 

 PARTITIONED KINEMATICS FOR THE MERLIN ROBOTMichael S. Branicky

ARTIFICIAL INTELLIGENCE LABORATORY
DEPARTMFNT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02193

Steven J. Remis
BIODYNAMICS AND BIOENGINEERING DIVISION
HARRY G. ARMSTRONG AEROSPACE MEDICAL RESEARCH LABORATORY WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-6573

NOVEMBER 1990


FINAI. REPORT FOR THE PERIOD JANUARY 1990 THROUGH DECEMBER 1990

Approved for public release: distribution is unlimited.

HARRY G. ARMSTRONG AEROSPACE MEDICAL RESEARCH LABORATORY
HUMAN SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-6573

## NOTICES

When US Government drawing, apecificationa, or other data are uaed for any purpose other than a definitely related Government procurement operation, the Government thereby incura no reaponsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furniahed, oc in any way supplied the aid drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copied of this report from the Harry G. Armstrong Aeroapace Medical Research Laboratory. Additional copiea may be purchaaed from:

```
National Technical Information Service
5285 Port Royal Road
Springfield VA 22161
```

Federal Government agencies and their contractors registered with Defense Technical Information Center ahould direct request for copies of this report to:

Defense Technical Information Center Cameron Station
Alexandria VA 22314
technical review and approval

AAMRL-SR-90-517

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the Nat tonal Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.
FOR THE COMMANDER


- ter Cl. Tucker
peter a. lurker, lt Col, usaf bs
Acting, Director
Biodynamics and Bioengineering Division
Harry G. Armairong Aerospace Medical Research Laboratory



## Contents

1 Introduction ..... 2
2 MBA Exoskeleton Forward Kinematics ..... 4
3 Merlin Robot Kinematics ..... 9
3.1 Position ..... 9
3.2 Orientation ..... 10
4 Conclusions ..... 11


## 1 Introduction

At the Harry G. Armstrong Aerospace Medical Research Laboratory, the Human Sensory Feedback team of the Biological Acoustics Branch is investigating technologies for intuitive human control of, and sensory feedback from, teleoperated robotic devices. To this end the Force-Refiecting Interfaces to Telemanipulators Testing System (FITTS) has been established [5]. This system is currently undergoing refinement before its use as a dedicated testbed for evaluating man-machine interfaces to teleoperators.

The goal of the FITTS system is to investigate human interfaces to telerobotic systems. The first interface to be evaluated by FITTS is the MBA Exoskeleton, shown in Figure 1. This seven degree-of-freedom (DOF), unilateral device is being used to establish performance baselines for worst-case telerobotic performance. The optimal baselines, of course, will be human hands-on task completion, although it is recognized that synergism between the operator and the robots may eventually surpass this now-optimal baseline.


Figure 1: Seven DOF MBA Exoskeleton.
The slave robots used in FITTS are the 6 DOF American Robot Corporation Merlin robots shown in Figure 2. The testbed contains a left-right pair of Merlins, although only the left-arm Merlin is currently operating at high speed. Each Merlin has a 50 lb payload, and can move the end effector at 5 It throughout the workspace. The left-arm Merlin has been equipped with the optional High Speed Host laterface (HSHI), which ailows the control computer to update desired position or velocity commands at 250 H : via shared-memory window.

In addition to the MBA Exoskeleton and the Merlin robots, FITTS contains a peg-into hole taskboard developed jointly by the Naval Oceans Systems Center - Hawaii, and AAMRL [8]. This lask'soard is particularly well.suited to measuring lask performance using a Fitts' Law paradigm [4]. The peg-into-hole tasks available have indices of difficulty (ID) ranging from 6 to 12, with the tasks of higher ID resulting from closer tolerances between the pegs and the holes or larger
amplitudes of movement. Two preliminary studies have been completed at AAMRL using this subsystem of FITTS [7] [6] to measure the task performance degradation caused by the MBA Exoskeleton, exclusive of any slave robotic systems.


Figure 2: Six DOF Merlin Industrial Robots.
The interactions between the components of the FITTS testbed are shown in Figure 3. Joint angle data flows serially from the MBA Exoskeleton to the Compaq computer, which then calculates the endpoint position of the exoskeleton. The Compaq next computes the inverse kinernatics of the Merlin robot, and feeds the joint position information to the robot's controller via shared RAM. The Merlin controller internally generates a trajectory to accomplish this motion.


Figure 3: FITTS subsystems and their interactions.
This paper describes recent work to improve the performance of the FITTS system, preparing it first fr-unilateral, then for bilateral teleoperation. Specifically, the steps taken to optimize the
kinematics code for the MBA Exoskeleton are presented. Next, the Merlin kinematics solutions, using the method of wrist partitioning, are given. It is shown that these new algorithms reduce the computational time by 75 per cent from the previous methods. An analysis of the FITTS system's communication paths is then completed to determine the improvements in communication rates needed to optimize performance for unilateral teleoperation. Finally, the process is given which will allow the FITTS testbed to evaluate bilateral man-machine interfaces, such as force-reflecting exoskeletons.

## 2 MBA Exoskeleton Forward Kinematics

| link | $\theta 2$ | $\alpha_{1}$ | $a_{1}$ | $d_{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $-90^{\circ}$ | 0 | $L_{1}-d_{1} \sin 9^{\circ}$ | $L_{2} \cos 9^{\circ}-L_{1}$ |
| 2 | $90^{\circ}$ | $9^{\circ}$ | $L_{1}$ | 0 |
| 3 | $\theta: 1$ | $-90^{\circ}$ | 0 | 0 |
| 4 | $\theta_{1}$ | $90^{\circ}$ | 0 | $L_{6}-L_{\text {\% }}$ |
| 5 | $\theta_{5}$ | $-90^{\text {c }}$ | 0 | $L_{1}$ : |
| 6 | 0 | 0 | 0 | $L_{7}+L_{4}+L_{9}-L_{10}+L_{11}$ |
| 7 | $\theta_{7}$ | $90^{\circ}$ | 0 | 0 |
| 8 | $\theta_{N}$ | $-90^{\circ}$ | 0 | $L_{1: 1}$ |
| 9 | $\theta_{9}$ | 0 | $L_{19}-L_{211}$ | $-L_{11}+L_{15}+L_{16}$ |
| 10 | $90^{\circ}$ | $-90^{\circ}$ | 0 | 0 |
| 11 | $\gamma_{11}-\tan ^{-1}\left(L_{17} / L_{18}\right)$ | $90^{\circ}$ | 0 | 0 |
| 12 | $-90^{\circ}$ | 0 | 0 | $\sqrt{L_{17}^{2}+L_{\text {ik }}^{\prime}}$ |

Table 1: D-Il paramaters for the MPA exoskeleton, left arm.

We begin with the Denavit-llartenburg (D-II) parameters for the MBA exoskeleton, as found by Gary Merrill of Systems Research Laboratories, Inc. He assigued twelve coordinate frames for each arm, shown in Figure 4 and summarized in Table 1. See [7] for more details.

In Table $1, \theta_{1}$ is the mapping from $z_{1-1}$ to $z_{1}$ about the $z_{1-1}$ axis, $a_{1}$ is the mapping from $z_{1-1}$ to $z_{1}$ about the $z_{1}$ axis, $a_{1}$ is the disiance between the $z_{1-1}$ and $z_{1}$ axes along $z_{1}, d_{1}$ is the distance
 in frame 11, and the addend tan ${ }^{-1}(\cdot)$ term is a fixed offset for this frame.

The forward kinematics (of a single arm) of the MBA exuskeleton liad heen calculated on line by iteratively loading and then multiplying the twelve transformation matrices corresponding to earh of these frames. The $C$ code that performed this operation required $\mathbf{i} 68$ muitiplies, 576 additions. 48 trigonomelric function evaluations, over 400 variable assignments, 36 nested for loops, and 1: function calls (with variable declarations initinlizations). Each iteration of this code took 11.2 ms of compute time on a 33 Mliz Compaq 80386 persunal computer with an 80387 math ceprocessor.

In order to improve controller bandwidth - and performance - it was deemed necessary to


LINK 2 - COORDINATE SYSTEM


LINK 3 - COORDINATE SYSTEM

b. 0

0,0
$\bullet, 1_{4}-4$

7



LINK 5 - COORDNATE SYSTEM

$4=0$
4
4.0

LINKS 6 AND 7-COORDINATE SYSTEMS


FIGUAE (6) - COORGNATE SYSTEMS RT FOR THE DENAYIT-HANTENEUBG FORMULATION FOR TNE FOWWARO KHEMMATICS

LINK - COORDWATE SYSTEM



Houne (6)




[^0]Figure 4: from [7]. Denavit-Hartenburg parameters for the MBA exoskeleton.
explicitly formulate the forward kinematles of the MBA exoskeleton by hand, and then calculate only these simplified kinematics on-line. The twelve transformation matrlces were obtained from the D-H parameters and finally reduced to three. The calculations are shown below.

The general form of the transformation matrix is as given in [1]:

$$
T_{i}=\left(\begin{array}{cccc}
c \theta_{i} & -c \alpha_{i} s \theta_{i} & s \alpha_{i} s \theta_{i} & a_{i} c \theta_{i}  \tag{1}\\
s \theta_{i} & c \alpha_{i} c \theta_{i} & -s \alpha_{i} c \theta_{i} & a_{i} s \theta_{i} \\
0 & s \alpha_{i} & c \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $c x$ and $s x$ are shorthand for $\cos x$ and $\sin x$, respectively.
Substituting each of tise D-H parameters intc the appropriate $T_{1}$, the $t$ welve transformetion matrices are easily found to be:

$$
\begin{align*}
& T_{1}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & -a_{1} \\
0 & 0 & 1 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right)  \tag{2}\\
& T_{2}=\left(\begin{array}{cccc}
0 & -c \alpha_{2} & s \alpha_{2} & 0 \\
1 & 0 & 0 & a_{2} \\
0 & s \alpha_{2} & c \alpha_{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)  \tag{3}\\
& T_{1}=\left(\begin{array}{cccc}
c \theta_{1} & 0 & -s \theta_{3} & 0 \\
s \theta_{1} & 0 & c \theta_{1} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)  \tag{4}\\
& T_{1}=\left(\begin{array}{cccc}
c \theta_{1} & 0 & s \theta_{1} & 0 \\
s \theta_{4} & 0 & -c \theta_{4} & 0 \\
0 & 1 & 0 & d_{4} \\
0 & 0 & 0 & 1
\end{array}\right)  \tag{5}\\
& T_{s}=\left(\begin{array}{cccc}
c \theta_{3} & 0 & -s \theta_{3} & 1 \\
s \theta_{3} & 0 & c \theta_{3} & 0 \\
0 & -1 & 0 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right)  \tag{6}\\
& T_{i}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{6} \\
0 & 0 & 0 & 1
\end{array}\right)  \tag{7}\\
& =\left(\begin{array}{cccc}
c \theta_{7} & 0 & s \theta_{z} & 0 \\
s \theta_{7} & 0 & -c \theta_{7} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \tag{8}
\end{align*}
$$

$$
\begin{align*}
T_{8} & =\left(\begin{array}{cccc}
c \theta_{3} & 0 & -s \theta_{8} & 0 \\
s \theta_{3} & 0 & c \theta_{s} & 0 \\
0 & -1 & 0 & d_{s} \\
0 & 0 & 0 & 1
\end{array}\right)  \tag{9}\\
T_{9} & =\left(\begin{array}{cccc}
c \theta_{9} & -s \theta_{9} & 0 & c \theta_{9} a_{9} \\
s \theta_{9} & c \theta_{9} & 0 & s \theta_{9} a_{9} \\
0 & 0 & 1 & d_{9} \\
0 & 0 & 0 & 1
\end{array}\right)  \tag{10}\\
T_{10} & =\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)  \tag{11}\\
T_{11} & =\left(\begin{array}{cccc}
c \theta_{11} & 0 & s \theta_{11} & 0 \\
s \theta_{11} & 0 & -c \theta_{11} & 0 \\
0 & 1 & 0 & 0 \\
n & 0 & 0 & 1
\end{array}\right)  \tag{12}\\
T_{12} & =\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & d_{12} \\
0 & 0 & 0 & 1
\end{array}\right) \tag{13}
\end{align*}
$$

Evidently these matrices are both sparse and contain many unitary element, nence, it is computationally advantageous to multiply them out by hand to exploit these features. In the following, we reduce from twelve to six transformation matrices, using the notation

$$
\begin{gather*}
T_{1-}=T_{1} T,  \tag{14}\\
T_{1-2}=\left(\begin{array}{cccc}
1 & 0 & 0 & a_{2} \\
0 & c a_{2} & -s a_{2} & -a_{1} \\
0 & s a_{2} & c a_{2} & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right)  \tag{15}\\
T_{1-1}=\left(\begin{array}{cccc}
c \theta_{1} c \theta_{1} & -s \theta_{3} & c \theta_{1} s \theta_{1} & -s \theta_{1} d_{1} \\
s \theta_{3} c \theta_{1} & c \theta_{3} & s \theta_{1}, \theta_{1} & c \theta_{1} d_{1} \\
-s \theta_{1} & 0 & c \theta_{1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)  \tag{15}\\
T_{s-0}=\left(\begin{array}{cccc}
c \theta_{3} & 0 & s \theta_{3} & -s \theta_{3} d_{6} \\
s \theta_{3} & 0 & c \theta_{3} & c \theta_{s} d_{6} \\
0 & -1 & 0 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right) \tag{17}
\end{gather*}
$$

$$
\begin{align*}
T_{7-s} & =\left(\begin{array}{cccc}
c \theta_{7} c \theta_{8} & -s \theta_{7} & -c \theta_{7} s \theta_{8} & s \theta_{7} d_{8} \\
s \theta_{7} c \theta_{8} & c \theta_{7} & -s \theta_{7} s \theta_{8} & -c \theta_{7} d_{8} \\
s \theta_{8} & 0 & c \theta_{8} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)  \tag{18}\\
T_{9-10} & =\left(\begin{array}{cccc}
-s \theta_{9} & 0 & -c \theta_{9} & c \theta_{9} a_{9} \\
c \theta_{9} & 0 & -s \theta_{9} & s \theta_{9} a_{9} \\
0 & -1 & 0 & d_{9} \\
0 & 0 & 0 & 1
\end{array}\right)  \tag{19}\\
T_{11-12} & =\left(\begin{array}{cccc}
0 & c \theta_{11} & s \theta_{11} & s \theta_{11} d_{12} \\
0 & s \theta_{11} & -c \theta_{11} & -c \theta_{11} d_{12} \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \tag{20}
\end{align*}
$$

Finally, these six are reduced to only three transformation matrices. These three matrices are shown below, using the notation

$$
\begin{equation*}
T_{1-1}=T_{1-,} T_{k-1} \tag{21}
\end{equation*}
$$

and we adopt the additional convention of using $c_{1}$ and $s_{1}$ to represent $\cos \theta_{1}$ and $\sin \theta_{1}$, respectively:

$$
\begin{align*}
& T_{1-1}=\left(\begin{array}{cccc}
c_{1} c_{1} & -s_{3} & c_{3} s_{1} & a_{2}-d_{1} s_{3} \\
c a_{2} s_{1} c_{1}+s a_{2} s_{1} & c a_{2} c_{1} & c a_{2} s_{1} s_{1}-s a_{2} c_{1} & d_{1} c a_{2} c_{1}-a_{1} \\
s \alpha_{2} s_{1} c_{1}-c a_{2} s_{1} & s a_{2} c_{1} & s a_{2} s_{3} s_{1}+c a_{2} c_{1} & d_{1} s a_{2} c_{1}+d_{1} \\
0 & 0 & 0 & 1
\end{array}\right)  \tag{22}\\
& T_{3-K}=\left(\begin{array}{cccc}
c_{3} c_{i} c_{M}-s_{3} s_{N} & -c_{3} s_{7} & -c_{3} c_{i} s_{N}-s_{3} c_{M} & d_{N} c_{3} s_{i}-d_{6} s_{3} \\
s_{5} c_{i} c_{M}+c_{3} s_{M} & -s_{3} s_{7} & -s_{3} c_{i} s_{N}+c_{3} c_{M} & d_{N} s_{3} s_{i}+d_{0} c_{5} \\
-s_{i} c_{M} & -c_{7} & s_{i} s_{M} & d_{N} c_{i}+d_{3} \\
0 & 0 & 0 & 1
\end{array}\right)  \tag{23}\\
& T_{9-12}=\left(\begin{array}{cccc}
c_{9} & -s_{9} c_{11} & -s_{19} s_{11} & -d_{12} s_{y} s_{11}+a_{9} c_{9} \\
s_{9} & c_{9} c_{11} & c_{9} s_{11} & d_{12} c_{9} s_{11}+a_{01} s_{9} \\
0 & -s_{11} & c_{11} & d_{12} c_{1 i}+d_{9} \\
0 & 0 & 0 & 1
\end{array}\right) \tag{24}
\end{align*}
$$

These three natrices were coded ia the C progranming language on the Compaq computer. The remaining two matrix nultiplications.

$$
\begin{equation*}
T_{1}=r_{1-1} r_{1} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{1-1:}=T_{1-n} T_{1,-1:} \tag{26}
\end{equation*}
$$

were explicitly written in terms of the matrix elements, with multiplications by 0,1 , and $\cdot 1$ removed by hand. This technique, tl:ough sub-optimal, is significantly more efficient than the previous method of loading and multiplying each matrix using nested for loops. The resulting code has
only 112 multiplications, 75 additions, 14 trigonometric function evaluations, about 75 variable assignments, no for lcops, and no function calls; its cycle time is 0.7 ms on the Compaq (versus 11.2 ms for the previous method).

Further optimisation can be achieved in two ways, if desired. The first procedure is to explicitly combine the three matrices $T_{1-1}, T_{5-8}$, and $T_{9-12}$ off-line. This results in obtaining the final transformation matrix, $T_{1-12}$, without requiring any interim matrix computations. The computational advantage of this method comes from reducing the number of interim variable assignments and register manipulations. Unfortunately, the complexity of these matrices suggests the use of a symbolic math program to perform these calculations.

The second optimisation procedure is to search the final matrices (or matrix if the previocs optimisation method is also used) for all common factors. Each commoa factor should be computed once, and the resultant of this calculation used at each occurrence of the factor. This process will refuce the number of rultiplications, 'rigonometric function evaluations, and register manipulations. Although this process can often save a significant amount of time, in our case the number of common factors appears to be small; thus the savings would not be very great.

## 3 Merlin Robot Kinematics

Since the Merlin robot has a spherical wrist, its kinematic formulation may be partitioned into position (first three DOF) and orientation (last three DOF) [9]. The forward and inverse equations for position of the Merlin robot were found using the geonetric approach [3]; those for orientation are more easily found because the wrist is spherical [10]. The complete solution is very similar to that of a PUMA 560 robot.

The following sections relate the forward and inverse solutions for the Merlin without descriting the process in detail. We again adopt cr and s. as shorthand for $\cos x$ and $\sin x$, respectively, and the additional convention of using $c$, and $s$, to represent $c, s \theta_{\text {, }}$ and $\sin \theta_{1}$, respectively. In the sections which fellow, we $u_{i}-$ the general form of a transformation matrix

$$
T=\left(\begin{array}{cccc}
n_{s} & s_{s} & a_{s} & p_{s}  \tag{27}\\
n_{y} & s_{y} & a_{y} & p_{y} \\
n_{s} & s_{s} & a_{z} & p_{s} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

with $T[i][j]$ representing the $i j t h e n t r y$ of this matrix, and of of representing the array of joint augles for the Merlin, begiming with the base and working towards the final hand roll.

### 3.1 Position

Given $\theta_{11}$, wif the forward equations to the wrist are as follosis:

$$
\begin{align*}
& r_{1}=l_{1} c \theta_{1}+l_{1} c \theta_{1}  \tag{28}\\
& \boldsymbol{p}_{2}=-d_{1} s \theta_{1} \cdot r_{1} c \theta_{1}  \tag{29}\\
& \boldsymbol{p}_{\mathbf{y}}=d_{!} \mathrm{c} \theta_{1} \cdot r_{1} s \theta_{1}  \tag{30}\\
& p_{:}=l_{1} s \theta_{2}+l_{1} s \theta_{1} \tag{31}
\end{align*}
$$

where $d_{2}=12.0, l_{2}=17.38, l_{3}=17.24$ (units are inches), $\theta_{3}$ is measured absolutely, and $r_{\|}$is the vector from the base coordinate frame to the first wrist coordinate frame.

The inverse equations for wrist position, given $p_{x}, p_{y}$, and $p_{z}$, are the following:

$$
\begin{align*}
r_{\|} & =\sqrt{p_{x}^{2}+p_{y}^{2}-d_{2}^{2}}  \tag{32}\\
c & =\frac{l_{3}^{2}-l_{2}^{2}+r_{\|}^{2}+p_{z}^{2}}{2 l_{3}}  \tag{33}\\
\partial_{1} & =\operatorname{atan} 2\left(r_{\|}, d_{2}\right)-\operatorname{atan} 2\left(p_{x}, p_{y}\right)  \tag{34}\\
\theta_{3} & =\operatorname{atan} 2\left(p_{z}, r_{\|}\right)+\operatorname{atan} 2\left(r_{\|}^{2}+p_{z}^{2}-c^{2}, c\right)  \tag{35}\\
\theta_{2} & =\operatorname{atan} 2\left(p_{z}-l_{3} \mathrm{~s} \theta_{3}, r_{\|}-l_{3} \mathrm{c} \theta_{3}\right) \tag{36}
\end{align*}
$$

where $\theta_{3}$ is again given as an absolute angle.
In implementing the above solutions, it should be noted that the Merlin controller gives the signs of $\theta_{2}$ and $\theta_{3}$ opposite to convention, and hence this must be accounted for by negating these two angles before (forward) and after (inverse) the above calculations are performed.

### 3.2 Orientation

Before listing the equations for the orientation of the Merlin wrist, we first define the following common factors in these equations:

$$
\begin{align*}
\mathbf{c}_{23} & =\cos \left(\theta_{3}-\pi / 2\right)  \tag{37}\\
s_{23} & =\sin \left(\theta_{3}-\pi / 2\right)  \tag{38}\\
k_{1} & =c_{4} c_{5} c_{6}-s_{4} s_{6}  \tag{39}\\
k_{2} & =s_{4} c_{5} c_{6}+c_{4} s_{6}  \tag{40}\\
k_{3} & =s_{1} c_{5} s_{6}-c_{1} c_{6}  \tag{41}\\
k_{11} & =c_{23} k_{1}-s_{23} s_{5} c_{6}  \tag{42}\\
k_{5} & =c_{11} c_{5} s_{6}+s_{4} c_{6}  \tag{43}\\
k_{6} & =c_{23} c_{4} s_{5}+s_{23} c_{5} \tag{44}
\end{align*}
$$

With these common factors defined, the forward kinematics equations for wrist orientation simplify to the following:

$$
\begin{align*}
& T[0][0]=c_{1} k_{1}+s_{1} k_{2}  \tag{45}\\
& T[1][0]=s_{1} k_{1}-c_{1} k_{2}  \tag{46}\\
& T[2][0]=-s_{2 ; 3} k_{1}-c_{23} s_{5} c_{6}  \tag{47}\\
& T[0][1]=c_{1}\left(-c_{23} k_{5}+s_{23} s_{5} s_{6}\right)-s_{1} k_{3}  \tag{48}\\
& T[1][1]=s_{1}\left(-c_{23} k_{5}+s_{23} s_{5} s_{6}\right)+c_{1} k_{3}  \tag{49}\\
& T[2][1]=s_{23} k_{5}+c_{23} s_{5} s_{6}  \tag{50}\\
& T[0][2]=-c_{1} k_{6}-s_{1} s_{1} s_{5}  \tag{51}\\
& T[1][2]=-s_{1} k_{6}+c_{1} s_{1} s_{5}  \tag{52}\\
& T[2][2]=s_{23} c_{1} s_{5}-c_{23} c_{5} \tag{53}
\end{align*}
$$

The inverse equations for the wrist are given below. We will show each angle's solution in turn after defining some temporary constants for each. First $\theta_{1}$ and $\theta_{a}$ must be found with the inverse solution for wrist position. To solve for wrist orientation we also need $c_{23}$ and $s_{23}$ (where the subscript ${ }_{23}$ represents $\sigma_{2}+\theta_{3}$ ). Note that

$$
\begin{align*}
& \mathbf{c}_{23}=\cos \left(\theta_{3}-\pi / 2\right)  \tag{54}\\
& \mathbf{s}_{23}=\sin \left(\theta_{3}-\pi / 2\right) \tag{55}
\end{align*}
$$

bccause of the absolute measurement of $\theta_{3}$, and because $\theta_{2}$ has an initial alignment of $\pi / 2$ from the base frame.

For $\theta_{4}$, we have

$$
\begin{align*}
& t_{1}=T[2][2] s_{23}-T[0][2] \mathrm{c}_{1} \mathrm{c}_{23}-T[1][2] \mathrm{s}_{1} \mathrm{c}_{23}  \tag{56}\\
& \boldsymbol{t}_{2}=T[1][2] \mathrm{c}_{1}-T^{\prime}[0][2] \mathrm{s}_{1}  \tag{57}\\
& \theta_{1}=\operatorname{atan} 2\left(t_{2}, t_{1}\right) \tag{58}
\end{align*}
$$

For $\theta_{5}$, we have

$$
\begin{align*}
& \boldsymbol{t}_{1}=-T[0][2] \mathrm{c}_{1} s_{23}-T[1][2] s_{1} s_{2: 1}-T[2][2] \mathrm{c}_{2: 1}  \tag{59}\\
& \boldsymbol{t}_{2}=T[2][2] \mathrm{s}_{2: 3} \mathrm{c}_{1}-T[0][2]\left(\mathrm{c}_{1} \mathrm{c}_{23} \mathrm{c}_{1}+\mathrm{s}_{1} \mathrm{~s}_{1}\right)-T[1][2]\left(\mathrm{s}_{1} \mathrm{c}_{2,2} \mathrm{c}_{1}-\mathrm{c}_{1} s_{1}\right)  \tag{60}\\
& \theta_{3}=\operatorname{atan} 2\left(t_{2}, t_{1}\right) \tag{61}
\end{align*}
$$

For $\theta_{6}$, we have

$$
\begin{align*}
& t_{1}=T[0][0]\left(i_{3}\left(c_{1} c_{2: 1} c_{1}+s_{1} s_{1}\right)-c_{1} s_{1}, s_{s}\right)  \tag{62}\\
& +T[1][0]\left(c_{5}\left(s_{1} c_{22} c_{1}-c_{1} s_{1}\right)-s_{1} s_{2.1} s_{5}\right)-T[2][0]\left(s_{2,2} c_{1} c_{3}+c_{2.1} s_{3}\right)  \tag{63}\\
& t_{2}=T[2][0] s_{2}, s_{1}-T[0][0]\left(c_{1} c_{2} s_{1}-s_{1} c_{1}\right)-T[1][0]\left(s_{1} c_{2}, s_{1}+c_{1} c_{1}\right)  \tag{64}\\
& \theta_{1 ;}=\operatorname{atan} 2\left(t_{2}, t_{1}\right) \tag{65}
\end{align*}
$$

To move the robot wrist to $\theta_{[1, \ldots(i)}$, realize that the Merlin distinguishes between $1^{\circ}, 361^{c}$, and $-359^{\circ}$, but the atan2 function only returns values in the range of $\pm 180^{\circ}$. To account for this discrepancy, a section of $C$ code was cdded to the inverse solution immediately following the computation of $\theta_{1}$. This code keeps track of $\theta_{1}$ as the wrist rolls about its axis, and adds $\pm 180^{\circ}$ as often as necessary to prevent a "flip" of $180^{\circ}$ when moving to the new position. The coas. also tracks $\theta_{6}$, and uses the saine technique to prevent this joint from "flipping."

This completes the forward and inverse kinematics solutions fur the Merlin robut. These equa tions were hand-optinnized and coded in the (C computer programming language. The full (six DOF) inverse solution can be catculated in less than 1 ms on the Compay computer.

## 4 Conclusions

With the changes described in this paper, calculating the forward kinematics of the MBA exoskeleton and the inverse kinematics of the Merlin, plus transferring this data from the Compaq to the Merlin takes less than $\mathbf{3} \mathrm{ms}$ (the minimum update time of the Merlin robots is 4 ms ). Ilowever, the

FITTS hardware cannot yet operate above this 250 Hz goal dce to the 32.8 kbaud serial (RS-422) link between the MBA exoskeleton and the Compaq computer.

It is evident we will achieve maximum throughput for this system by increasing the bandwidth of MBA-Compaq communications. Using the current communications protocol, transferring joint angle data from the exoskeletrn to the Compaq takes, at best, $8 \mathrm{~ms}[2]$ for one arm of the exoskeleton. Some of this delay is $\mathrm{d}^{\text {.. io the Compaq computer polling the port too often during data }}$ transfer, essentially preventing data flow from the exoskeleton to the computer during these polls. This problem has been corrected by making the data transfer interrupt-driven.

The second issue of concern is the transfer rate. To send joint angle data for both arms of the exoskeleton in less than 1 ms , the exoskeleton must send 328 -bit bytes ( 14 DOF plus grippers), in addition to appropriate start/stop bits and handshaking signals. A quick calculation shows 320 kbaud is necessary for the RS-422 link to support this throughput requirement. Another approach is to send the data in parallel, using a 32 kbaud transfer rate. Because of the desire to be able to locate the exoskeleton some distance from the control computer, the differentially-driven serial port is the better solution, but the baud rate must be increased above 320 kbaud. Since 1 Mbaud is often achievable with RS. 422 ports, the plan is to implement 1 Mbaud on this system.

Once this communications upgrade is completed, the FITTS hardware will be able to perform at its peak for unilateral teleoperation. However, several issues need to be addressed before the system is ready for bilateral teleoperation. One issue is deciding which controller should compute the forward kinematics of the new interfaces. Another is determining which computer should calculate feedback joint torques for force reflection, using the well-known relationship

$$
\begin{equation*}
\boldsymbol{T}=\mathbf{J}^{\dagger} \mathbf{F} \tag{66}
\end{equation*}
$$

where $T$ is the $\left[\begin{array}{lll}6 & x\end{array}\right]$ vector of joint torques, $J^{I}$ is the transpose of the Jacobian of the bilateral interface, and $\mathbf{F}$ is the [ $6 \times 1$ ) vector of force/torque information $\left[F_{x}, F_{y}, F_{z}, T_{s}, T_{y}, T_{z}\right.$ ] from the Merlin's end effector.

The issues listed above, and others, remain to be answered before EITTS becomes the inodular testbed of bilateral human interfaces, as it is designed. The basic plan is to use the Compaq computer to control the Merlins, and as the center for data exchainge between masters and slaves. This implies that the bilateral devices must compute their own forward kinematics, out putting only the final transformation matrix to the Compaq. These interfaces must also be prepared to accept 6 DOF force/torque information from the Compaq, and compute the appropriate joint torques for force feedback. A determining factor in this plan is to keep the Merlin update rate above $250 \mathrm{H}:$.

This paper showed that the FITTS testbed has been established, and is being refined at AAMRL. This testbed will soon be able to operate for unilateral teleoperation, comparing various human interface devices for their ease of operation. A preliminary plara has also been pre. sented which will allow FITTS to become a modular test bed for evaluating the various bilateral human-interfaces currently used as input devices to teleoperators.

## References

[1] Asada, Haruhiko and J. E. Slotine, Robot Analysis and Control, John Wiley \& Sons, New York, 1986.
[2] Branicky, M. S., "Control and Modeling for Improved Human Sensory Feedback," 1990 LGFP/DoD Fellowship Summer Research Program Final Report, Universal Energy Systems, Inc., 1990.
[3] Craig, John J., Introduction to Robotics, Addison-Wesley Publishing Company, Reading, MA, 1986.
[4] Fitts, P. M., "The Information Capacity of the Human Motor System in Controlling the Amplitude of a Movement," Journal of Experimental Psychology, 46: pp. 381-391, 1954.
[5] Remis, Steven J. and D. K. Nelson, "Force-reflecting Interfaces to Telemanipulators Testing System (FITTS) Interim User's Guide," AAMRL Special Report, AAMRL-SR-90-509, 1990.
[6] Remis, Sieven J. and D. W. Repperger "Quantifying Performance Degradation Due to the ManMachine Interface of Telemanipulators," AAMRL Special Report, AAMRL-SR-90-510, 1990.
[7] Repperger, Dan W., S. J. Remis, and G. Merrill, "Performance Measures of Teleoperation Using an Exoskeleton Device," Proc. of the 1990 IEEE Int. Conf. on Robotics and Automation, pp. 552-557, 1990.
[8] Spain, H., Peg-in-Hole Taskboard Documentation, Version 1.0. NOSC-HI, Code 531, March 1989.
[9] Stanisic, M. M., personal conversations with S.J. Reinis. Summer, 1989.
[10] W. A. Wolovich. Robotics: Basic Analysis and Design. Holt, Rinehart and Winston, 1987.


[^0]:    

