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1    Introduction 

At the Harry G. Armstrong Aerospace Medical Research Laboratory, the Human Sensory Feedback 
team of the Biological Acoustics Branch is investigating technologies for intuitive human control of, 
and sensory feedback from, teleoperated robotic devices. To this end the Force-Reflecting Interfaces 
to Telemanipulators Testing System (FITTS) has been established [5]. This system is currently 
undergoing refinement before its use as a dedicated testbed for evaluating man-machine interfaces 
to teleoperators. 

The goal of the FITTS system is to investigate human interfaces to telerobotic systems. The 
first interface to be evaluated by FITTS is the MBA Exoskeleton, shown in Figure 1. This seven 
degree-of-freedom (DOF), unilateral device is being used to establish performance baselines for 
worst-case telerobotic performance. The optimal baselines, of course, will be human hands-on task 
completion, although it is recognized that synergism between the operator and the robots may 
eventually surpass this now-optimal baseline. 

Figure 1: Seven DOF MBA Exoskeleton. 

The slave robots used in FITTS are the 6 DOF American Robot Corporation Merlin robots 
shown in Figure 2. The testbed contains a left right pair of Merlins, although only the left-arm 
Merlin is currently operating at high speed. Each Merlin has a 50 lb payload, and can move the 
end elector at 5 £~ throughout the workspace. The left-arm Merlin has been equipped with the 
optional High Speed Host Interface (HSHI), which allows the control computer to update desired 
position or velocity commands at 250 Hz via shared-memory window. 

In addition to the MBA Exoskeleton end the Merlin robots, FITTS contains a peg-into-hole 
taskboard developed jointly by the Naval Oceans Systems Center - Hawaii, and AAMRL [8|. This 
taskuoard is particularly well-suited to measuring task performance using a Fills' Law paradigm 
[4|. The peg-into-hole tasks available have indices of difficulty (ID) ranging from 6 to 12, with 
the tasks of higher ID resulting from closer tolerances between the pegs and the holes or larger 



amplitudes of movement. Two preliminary studies have been completed at AAMRL using this 
subsystem of FITTS [7] [6] to measure the task performance degradation caused by the MBA 
Exoskeleton, exclusive of any slave robotic systems. 

Figure 2: Six DOF Merlin Industrial Robots. 

The interactions between the components of the FITTS testbed are shown in Figure 3. Joint 
angle data flows serially from the MBA Exoskeleton to the Compaq computer, which then calculates 
the endpoint position of the exoskeleton. The Compaq next computes the inverse kinematics of the 
Merlin robot, and feeds the joint position information to the robot's controller via shared RAM. 
The Merlin controller internally generates a trajectory to accomplish this motion. 
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Figure 3: FITTS subsystems and their interactions. 

This paper describes recent work to improve the performance of the FITTS system, preparing 
it first 6*- unilateral, then for bilateral teleoperation. Specifically, the steps taken to optimize the 
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kinematics code for the MBA Exoskeleton are presented. Next, the Merlin kinematics solutions, 
using the method of wrist partitioning, are given. It is shown that these new algorithms reduce the 
computational time by 75 per cent from the previous methods. An analysis of the FITTS system's 
communication paths is then completed to determine the improvements in communication rates 
needed to optimize performance for unilateral teleoperation. Finally, the process is given which 
will allow the FITTS testbed to evaluate bilateral man-machine interfaces, such as force-reflecting 
exoskeletons. 

2    MBA Exoskeleton Forward Kinematics 

link e, Qi a, 4 
1 -90° 0 L\ - d\ sin9° Li cos 9° - L.| 
2 90° 9° L.s 0 
3 h -90° 0 0 
4 B4 90° 0 LH - Ln 
5 Or, -90° 0 In 
6 0 0 0 Lj -f LH + £»<> - L\o -f L\\ 
7 07 90° 0 0 
8 9* -90° 0 II:I 

9 h 0 £|!» ~ Li'H) -Lii + i>is -f Li<> 
10 90° - J)0° 0 0 
11 

12 

7,, - tan-'(L,7/L!n) 

-90° 

90° 

0 
  

0 

0 

0 

\A?7 + ii* 

Table 1: D-H parameters for the MPA exoskeleton, left arm. 

We begin with the Denavit-Hartenburg (D-H) parameters for the MBA exoskeleton, as found 
by Gary Merrill of Systems Research Laboratories, Inc. He assigned twelve coordinate frames for 
each arm, shown in Figure 4 and summarized in Table I. See [7] for more details. 

In Table 1, 0, is the mapping from r,.-i to x, about the «,_i axis, a, is the mapping from *,. > 
to :, about the r, axis, a, is the distance between the *,_| and z, axes along at,, d, is the distance 
between the z,-\ and z. axes along z,_i, L, is the length of link i, ->u is the measured joint angle 
in frame 11, and the addend tan" '(•) term is a fixed offset for this frame. 

The forward kinematics (of a single arm) of the MBA exoskeleton had been calculated on-line by 
iterative!)' loading and then multiplying the twelve transformation matrices corresponding to each 
of these frames. The C code that performed this operation required 768 multiplies, 576 additions, 
48 trigonometric function evaluations, over 401) variable assignments, 36 nested for loops, and 12 
function calls (with variable declarations initializations). Kacii iteration of this code took 11.2 ms 
of compute time on a 33 MHz Compaq 80386 personal computer with an 80387 math coprocessor. 

In order to improve controller bandwidth       and performance   -  it was deemed necessary to 



UNK 1 - COORDINATE SYSTEM 
LINK 4 . COORDINATE SYSTEM 

•„ - i,ootr -i. 

«• • "• 

•• • • 

LINK 2 - COORDINATE SYSTEM 

»..*,- 

>.. «. 

•MOULOtn 
JOMT 

«, -  e 

^_        -•• 

UNK 3 - COORDINATE SYSTEM 

,L      '      -•- 
^.— 

4, •   l. - l. 

71 
V. 

•• • •• 

•• •» 

V • •• 

•• • • 

UNK 5 - COORDINATE SYSTEM 

.«IM 

•» • •* 

LINKS • AND 7 - COORDINATE SYSTEMS 

". t. y—  
FIGURE (<0- COORDMATE SYSTEMS Wl PO« THE OENAVIT-HAftTEMSUftG 
        FORMULATION FOR THE FORWARD KINEMATICS    „^„. coo«^ mTf^ OEMA^TTENSUI Q 

UNK • - COORDINATE SYSTEM *    —**- * TH« FO«^ „NSSST•^ ° 

*.'lW 

COOM0MATI SYSTEMS M FO* THt DCMAim NAHTIMBUMC 
FORMULATION OF THt FONVMMO KINEMATICS 

•• • • 

"7 
Figure 4: From (7j. Denavit-Hartenb 

urg parameters for the MBA exoskeieton. 



explicitly formulate the forward kinematics of the MBA exoikeleton by hand, and then calculate 
only these simplified kinematics on-line. The twelve transformation matrices were obtained from 
the D-H parameters and finally reduced to three. The calculations are shown below. 

The general form of the transformation matrix is as given in [1]: 

/ c0,    -ca,s0,     sa,s0,     a,c0, N 

T, = 1* ca,c0, -sa,c0, a,80, 
0 sa, ca, 4 
0 0 0 1 

(1) 

I 

where ex and sx are shorthand for cosz and sinx, respectively. 

Substituting each of the D-H parameters into the appropriate T,t the twelve transformation 
matrices are easily found to be: 

T. = 
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-1 
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T« = 
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l$B       0 C08        0 
0 -1 
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(10) 

(11) 

(12) 

(13) 

Evidently these matrices are both sparse and contain many unitary element., hence, it is com- 
putationally advantageous to multiply them out by hand to exploit these features. In the following, 
we reduce from twelve to six transformation matrices, using the notation 

r,_, = T.TJ (14) 

T,,,= 

T,-,= 

TV 

(15) 

(15) 

(17) 
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T7-« = 
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/ 

(18) 

(19) 

(20) 

Finally, these six are reduced to only three transformation matrices. These three matrices are 
shown below, using the notation 

r,.i - n.ift-1 (2i) 
and we adopt the additional convention of using c, and s, to represent cos0, and sin0n respec- 

tively: 

T,.4 = 

/           C|C| -S3              c^si a-t - dt$    \ 

CQ..5 ,C 1 + SO-..S, CO]Cj CQ;$,S| - SQ/i | (f,ca;C , - a, 

sa..s»c, - cajt-i SO3C3 SO2S3S1 + ca^Ci J,sa>c:i 4- d\ 

0 0                  0 1 \ 

(22) 

TM - 

/ csCrC« - sis« -C5S7 -c5crs,t - sic„ JnCjST - dgi* \ 

S5C7C« + C&SM -S5S7 -S5C78M + CJCK d«S;iS7 + i»,C< 

-S7C«                 -C7                     S7»H d§CT 4- rf3 

0                        0                          0 1 V 

(23) 

'9-12 - 
•9 

0 

V ° 

-S9C11 -S«»S|| -d|iSyS|| + OsCy   \ 

CyCji c.,S|| ^!.'C.|Sn + a.,s«. 

-•n         tu rfi?C|; 4- <i>» 

0 0 1 

(24) 

/ 

These three matrices were coded ia the C programming language on the Compaq computer. 
The remaining two matrix multiplications. 

.Ul.l 

r, , - r,. ,/\ , 

^i-u - 7*i-»T-»_j.. 

(25) 

(26) 

were explicitly written in terms of the matrix elements, with multiplications by 0. 1, and -1 removed 
by hand. This technique, though sub-optimal, is significantly more efficient than the previous 
method of loading and multiplying each matrix using nested for loops.   The resulting code ha» 



only 112 multiplications, 75 additions, 14 trigonometric function evaluations, about 75 variable 
assignments, no for loops, and no function calls; its cycle time is 0.7 ms on the Compaq (versus 
11.2 ms for the previous method). 

Further optimization can be achieved in two ways, if desired. The first procedure is to explic- 
itly combine the three matrices T|_.|, T5_B, and r9_,2 off-line. This results in obtaining the final 
transformation matrix, T,_,2, without requiring any interim matrix computations. The computa- 
tional advantage of this method comes from reducing the number of interim variable assignments 
and register manipulations. Unfortunately, the complexity of these matrices suggests the use of a 
symbolic math program to perform these calculations. 

The second optimization procedure is to search the final matrices (or matrix if the previous op- 
timization method is also used) for all common factors. Each common factor should be computed 
once, and the resultant of this calculation used at each occurrence of the factor. This process will 
re-luce the number of multiplications, trigonometric function evaluations, and register manipula- 
tions. Although this process can often save a significant amount of time, in our case the number 
of common factors appears to be small; t^us the savings would not be very great. 

3    Merlin Robot Kinematics 

Since the Merlin robot has a spherical wrist, its kinematic formulation may be partitioned into 
position (first three DOF) and orientation (last three DOF) (9). The forward and inverse equations 
for position of the Merlin robot were found using the geometric approach [3]; those for orientation 
are more easily found because the wrift is spherical [10]. The complete solution is very similar to 
that of a PUMA 560 robot. 

The following sections relate the forward and inverse solutions for the Merlin without describing 
the process in detail. We again adopt ex and sx as shorthand for cosx and line, respectively, and 
the additional convention of using c, and s, to represent c-.stf, and sind/,, respectively. In the 
sections which fellow, we u»» the general form of a transformation matrix 

7 = 

"i »1 *x P'    ) 
«* «i «„ Vy 
M. s. a: P* 
0 u 0 »    1 

(27) 

with 7'[iJ[)j representing the i)th entry of this matrix, and iJr,   ,,• representing the array of joint 
angles for the Merlin, beginning with the base and working towards thr final hand roll. 

3.1     Position 

Given 0;,   ,.:, the forward equations to the wrist are as follo.vs: 

r„ tj<03 . /,c0, (28) 

pt =        J:*0l  • r ctf, (29) 

p, - d.c$t  . r.;»*, (30) 

p, - f>f4+/j»fi (31) 



where d2 ::::. :1 2.0, l2 :::= 17.38, l:1 = 17.24 (units are inches), Oa is measured ab::!>lutely, and rub the 
vector from the base coordinate frame to the first wrist coordinate frame. 

The inverse equations for wrist position, given P:o p11 , and pz, are the following: 

c 

. I z ? dz V P:x: + Pv- 2 

[ 2 [2 + 2 + 2 :3 - 2 rll Pz 

21:! 
= atan2{ r11' dz) - atan2{px, Pu) 

atan2(pz, r11) + atan2( r~ + p; - c2
, c) 

atan2(pz - l:~sO:h r11 - l3c03) 

·where 0:1 is again given as an absolute angle. 

{32) 

(33) 

(34) 

{35) 
{36} 

In implementing the above solutions, it should be noted that the Merlin controller gives the 
signs of 02 and 0:1 opposite to convention, and hence this must be accounted for by negating these 
two ar~gles before (forward) and after (inverse) the above calculations are performed. 

3.2 Orientation 

Before listing the equations for the orientation of the Merlin wrist, we first define the following 

common factors in these equations: 

Cz:~ cos(O:l- 7r/2) (37) 

s'2:l sin( 1/:1 - 1r /2) (38) 

k, = C.JC.)C(i - S.JSG (39) 
k2 = S,J C:; C(i t C.1 Sc; ( 40) 

k:l ·- s. 1cr,sn- c,cn ( 41) 

k, Cz:Jkl - Sz:JSsCG ( 42) 

k;: c.,cr,sn + S.tCG ( 43) 

kn CzJC.tS;, t Sz;JCS ( 44) 

With tllf.'!4C common factors defined, the forward kinematics equations for wrist orientation simplify 
to th!' following: 

T[O][O] = C] k 1 t S I k:z ( 45) 
7'[1][0] ·-- s, kl - c, k'2 ( 46) 

7'[2][0] - ·--s 2 : 1 k~ 1 ·- C:.!:IS;,Cr; (47) 

T[O]ll] = c 1 ( -c·,·1k· + s·,·1s-sc)- s 1k·1 ... ,, .... ·) ) . (48) 
T[l][l] ·- s,(-c:nk.r; + s2:1s.isn) + c1k:1 ( 49) 

'1'[2][1] --- s2·1h + c.,.,s.sr . ,) ... ,) ) (50) 
'1'[0][2] - --e,kn -·· s 1s 1s;, (51) 
'l'[l ][2] - - S-t-kn t CIS IS;, (52) 
T[2][2] --- B:.!:IC.JR.'i - C2:1Cr, (53) 
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For 0j, we have 

«1 

ti 

*A 

For 05, we have 

The inverse equations for the wrist are given below. We will show each angle's solution in 
turn after defining some temporary constants for each. First 6\ and 9,\ must be found with the 
inverse solution for wrist position. To solve for wrist orientation we also need C23 and §23 (where 
the subscript 2;i represents 62 + 0j). Note that 

C23   =   cos(03-*/2) (54) 

s23   =   sin(03-ir/2) (55) 

because of the absolute measurement of #3, and because 02 has an initial alignment of n/2 from 
the base frame. 

=   T[2][2]s23-T[0][2]c1c23-T[l](2js,c23 (56) 

=   T[l][2]c, - T[0][2]5l (57) 

=    atan2(*2,«,) (58) 

f,     =    -2'[0][2lclS23-T[l)(2]s|S23-T[2j[2]c2;, (59) 

h    =    T[2][2]s23C, -r(0][2](clC2,c, + s,sl)-T
,[l](2](s)C2,c,-c,Sl) (60) 

Or,    a    atan2(t2,t,) (61) 

For 0(i, we have 

(,    =    r[0][0](c,(ctC2,c,+sIsl)'C1s,lse>) (62) 

4-T[lJ[0l(cr,(s,c2;,c, - c,s,) - ijisafs) - r[2!!0](s23C.,c, + c2|i5) (63) 

r2    =-.    T(2][0]s23S, - r(0](0](c,c2,s, - s,c.) - T[llf0)(s,c2,s, + c,e,) (64) 

B«    =    atan2(f2,r,) (65) 

To move the robot wrist to 0(,...«), realize that tru Merlin distinguishes between 1°, 361c, and 
-359°, but the atan2 function only returns values in the range of ±180°. To account for this 

discrepancy, a section of C code was added to the inverse solution immediately following the com- 
putation of 0t. This code keeps track of 0, as the wrist rolls about its axis, and adds ±180° as often 
as necessary to prevent a "flip" of 180° when moving to the new position. The cot», also tracks 0U, 
and uses the same technique to prevent this joint from "flipping." 

This completes the forward and inverse kinematics solutions f«»r the Merlin robot. These equa- 
tions were hand-optimized and coded in the C computer programming language. The full (six 
DOF) inverse solution can be calculated in less than 1 ins on the Compaq computer. 

4    Conclusions 

With the changes described in this paper, calculating the forward kinematics of the MÜA exoskele- 
ton and the inverse kinematics of the Merlin, plus transferring this data from the Compaq to the 
Merlin takes less than 3 ms (the minimum update time of the Merlin robots is 4 ins). However, the 
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FITTS hardware cannot yet operate above this 250 Hz goal due to the 32.8 kbaud serial (RS-422) 
link between the MBA exoskeleton and the Compaq computer. 

It is evident we will achieve maximum throughput for this system by increasing the bandwidth 
of MBA-Compaq communications. Using the current communications protocol, transferring joint 
angle data from the exoskeleton to the Compaq takes, at best, 8 ms [2] for one arm of the exoskele- 
ton. Some of this delay is d. *o the Compaq computer polling the port too often during data 
transfer, essentially preventing data flow from the exoskeleton to the computer during these polls. 
This problem has been corrected by making the data transfer interrupt-driven. 

The second issue of concern is the transfer rate. To send joint angle data for both arms of the 
exoskeleton in less than 1 ms, the exoskeleton must send 32 8-bit bytes (14 DOF plus grippers), 
in addition to appropriate start/stop bits and handshaking signals. A quick calculation shows 320 
kbaud is necessary for the RS-422 link to support this throughput requirement. Another approach 
is to send the data in parallel, using a 32 kbaud transfer rate. Because of the desire to be able 
to locate the exoskeleton some distance from the control computer, the differentially-driven serial 
port is the better solution, but the baud rate must be increased above 320 kbaud. Since 1 Mbaud 
is often achievable with RS-422 ports, the plan is to implement 1 Mbaud on this system. 

Once this communications upgrade is completed, the FITTS hardware will be able to perform 
at its peak for unilateral teleoperation. However, several issues need to be addressed before the 
system is ready for bilateral teleoperation. One issue is deciding which controller should compute 
the forward kinematics of the new interfaces. Another is determining which computer should 
calculate feedback joint torques for force reflection, using the well-known relationship 

T = 3]F (66) 

where r is the |6 x 1] vector of joint torques, J' is the transpose of the Jacobian of the bilateral 
interface, and F is the [6 x 1] vector of force/torque information [FT,Ftf, F,,Tx,Ttf,7'x) from the 
Merlin's end effector. 

The issues listed above, and others, remain to be answered before FITTS becomes the modular 
testbed of bilateral human interfaces, as it is designed. The basic plan is to use the Compaq 
computer to control the Merlins, and as the center for data exchange between masters and slaves. 
This implies that the bilateral devices must compute their own forward kinematics, outputting only 
the final transformation matrix to the Compaq. These interfaces must also be prepared to accept 
6 DOF force/torque information from the Compaq, and compute the appropriate joint torques for 
force feedback. A determining factor in this plan is to keep the Merlin update rate above 250 Hz. 

This paper showed that the FITTS testbed has been established, and is being refined at 
AAMHL. This testbed will soon be able to operate for unilateral teleoperation, comparing var- 
ious human interface devices for their ease of operation. A preliminary plan has also been pre- 
sented which will allow FITTS to become a modular testbed for evaluating the various bilateral 
human-interfaces currently used as input devices to teleoperators. 
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