Архив категории Ищем научные статьи
A brief review on upper extremity robotic exoskeleton systems
- Тип контента: Научная статья
- Номер документа: 3433
- Название документа: A brief review on upper extremity robotic exoskeleton systems
- Номер (DOI, IBSN, Патент): 10.1109/ICIINFS.2011.6038092
- Изобретатель/автор: Kiguchi, K., Gopura, R.A.R.C., Bandara, D.S.V.
- Правопреемник/учебное заведение: Dept. of Mech. Eng., Univ. of Moratuwa, Katubedda, Sri Lanka
- Дата публикации документа: 2011-10-10
- Страна опубликовавшая документ: Шри-Ланка
- Язык документа: Английский
- Наименование изделия: Не заполнено
- Источник: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6038
- Вложения: Нет
- Аналитик: Helix
Robotic exoskeleton systems are one of the highly active areas in recent robotic research. These systems have been developed significantly to be used for the human power augmentation, robotic rehabilitation, human power assist, and haptic interaction in virtual reality. Unlike the robots used in industry, the robotic exoskeleton systems should be designed with special consideration since they directly interact with human user. In the mechanical design of these systems, movable ranges, safety, comfort wearing, low inertia, and adaptability should be especially considered. Controllability, responsiveness, flexible and smooth motion generation, and safety should especially be considered in the controllers of exoskeleton systems. Furthermore, the controller should generate the motions in accordance with the human motion intention. This paper briefly reviews the upper extremity robotic exoskeleton systems. In the short review, it is focused to identify the brief history, basic concept, challenges, and future development of the robotic exoskeleton systems. Furthermore, key technologies of upper extremity exoskeleton systems are reviewed by taking state-of-the-art robot as examples.
Категория: Ищем научные статьи | Нет комментариев »
A mathematical model for mapping EMG signal to joint torque for the human elbow joint using nonlinear regression
- Тип контента: Научная статья
- Номер документа: 1747
- Название документа: A mathematical model for mapping EMG signal to joint torque for the human elbow joint using nonlinear regression
- Номер (DOI, IBSN, Патент): 10.1109/ICARA.2000.4803995
- Изобретатель/автор: Ullah, K, Jung-Hoon Kim
- Правопреемник/учебное заведение: Dept. of Electron. & Commun. Eng., Myongji Univ., Yongin
- Дата публикации документа: 2009-03-21
- Страна опубликовавшая документ: Корея
- Язык документа: Английский
- Наименование изделия: Не заполнено
- Источник: http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&a
- Вложения: Не заполнено
- Аналитик: Не заполнено
Numerous researchers have investigated the relationship between EMG and joint torque. Most of these studies use some conventional filtering (i.e. rectification followed by low pass filtering) to estimate the electromyogram (EMG) amplitude and then relate it to the joint torque. Currently some advanced pre-processing techniques (i.e. signal whitening) are also used to estimate the EMG amplitude and then relate it to joint torque. In this study we apply some pre-processing techniques like DC offset removal, noise filtering followed by rectification and then we calculate the moving average of the EMG signal. Thus we get a linear envelope (muscle activation) of the EMG signal and use that linear envelope to estimate the joint torque. To map the EMG to joint torque we propose a new mathematical model. This model has some unknown adjustable parameters, and the values of these parameters are obtained using nonlinear regression. Five subjects took part in the experiments. They were asked to perform non-fatiguing and variable force maximal voluntary contractions (MVC) and submaximal voluntary contractions (SMVC), and the resulting elbow joint torque and EMG signals were recorded. This recorded data was entered to the model, to estimate best fit values for the unknown parameters. Once these values of the parameters were obtained they were put into the model and thus joint torque was estimated. Predictions made by our model are well correlated with experimental data in both MVC and SMVC, the correlation coefficient and mean square error obtained for experimental data during MVC are 0.998 and 0.056 Nm respectively. The results of this new model were compared with other existing models and some new models and it was found that our model has greater correlation and least mean square error with experimental data. This model may be helpful in the control systems for recognition systems, robot manipulators, exoskeletons, EMG prosthesis and electric stimulators.
Категория: Ищем научные статьи | Нет комментариев »
A Novel Motion Estimate Method of Human Joint with EMG-Driven Model
- Тип контента: Научная статья
- Номер документа: 1743
- Название документа: A Novel Motion Estimate Method of Human Joint with EMG-Driven Model
- Номер (DOI, IBSN, Патент): 10.1109/icbbe.2011.5780185
- Изобретатель/автор: Xingang Zhao, Qichuan Ding, Jianda Han, Anbin Xiong
- Правопреемник/учебное заведение: State Key Lab. of Robot., Chinese Acad. of Sci., Shenyang, China
- Дата публикации документа: 2011-05-31
- Страна опубликовавшая документ: Китай
- Язык документа: Английский
- Наименование изделия: Не заполнено
- Источник: http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&a
- Вложения: Не заполнено
- Аналитик: Не заполнено
Electromyography (EMG) has been widely used as control commands for prosthesis, powered exoskeletons and rehabilitative robots. In this paper, an EMG-driven state-space model is developed to estimate joint angular velocities and angles throughout elbow flexion/extension. The state equation of the model combines the Hill-based muscle model with the forward dynamics of joint movement, and expresses the kinematic variables as a function of neural activation levels. Then, EMG features including integral of absolute value and waveform length are extracted, and two quadratic equations which associate the kinematic variables with EMG features are fitted to represent the measurement equation. Based on the proposed model, the joint angular velocities and angles are estimated just using the EMG signals with the Extended Kalman Filter (EKF), and the estimation results are used to control a manipulator. The experimental results demonstrate the efficiency of EMG-based motion control with the proposed model.
Категория: Ищем научные статьи | Нет комментариев »
Virtual reality provides real therapy
- Тип контента: Научная статья
- Номер документа: 1741
- Название документа: Virtual reality provides real therapy
- Номер (DOI, IBSN, Патент): 10.1109/38.595261
- Изобретатель/автор: Lear, A.C.
- Правопреемник/учебное заведение: Не заполнено
- Дата публикации документа: 2002-08-06
- Страна опубликовавшая документ: Не заполнено
- Язык документа: Английский
- Наименование изделия: Не заполнено
- Источник: http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&a
- Вложения: Не заполнено
- Аналитик: Не заполнено
Virtual reality (VR) lets people act within and upon computer-generated environments, making it ideal for exposure therapy and some other forms of mental health treatment. In addition to representing stimuli with some degree of realism, a virtual environment (VE) lets users look at and interact with these things much as they would in the real world, using primarily their eyes and hands. This gives users a sense of physical as well as mental control over the things around them in the VE. SpiderWorld is one of a growing number of VEs that psychologists and VR researchers have begun to use to treat phobias and other anxiety disorders. SpiderWorld immerses the patient in a routine environmen-like a home kitchen-and introduces realistic-looking spiders that the patient can observe, manipulate or even squash as part of exposure therapy. Therapists who treat phobic patients often try to reduce anxiety by exposing a patient to the stimuli or situations that provoke the phobic reaction. Generating these as part of a VE promises a new approach to treatment-not to mention sparing some spiders their exoskeletons!
Категория: Ищем научные статьи | Нет комментариев »
A robot with cockroach inspired actuation and control
- Тип контента: Научная статья
- Номер документа: 1737
- Название документа: A robot with cockroach inspired actuation and control
- Номер (DOI, IBSN, Патент): 10.1109/AIM.2005.1511235
- Изобретатель/автор: Rutter, B.L., Ritzmann, R.E., Quinn, R.D., Kingsley, D.A., Jongung Choi
- Правопреемник/учебное заведение: Biorobotics Lab., Case Western Reserve Univ., Cleveland, OH
- Дата публикации документа: 2005-09-26
- Страна опубликовавшая документ: США
- Язык документа: Английский
- Наименование изделия: Не заполнено
- Источник: http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&a
- Вложения: Не заполнено
- Аналитик: Не заполнено
Robot V has been constructed with inspiration from the death head cockroach, Blaberus discoidalis. Its relative leg segment lengths, joint degrees of freedom, exoskeleton structure, relatively light legs, and location of its center of mass are all similar to those of the cockroach. In an attempt to take further advantage of the neuromechanics of the animal, actuators with muscle-like properties have been employed. The robot’s controller includes biologically inspired gait generation and inverse kinematics components. An actuator tensioning reflex which approximates the function of muscle tone is introduced, and resulting improvements to system response are shown
Категория: Ищем научные статьи | Нет комментариев »
Статистика
Категорий: 179
Статей всего: 2,003
По типу:
Видео: 36
Выдержка с форума: 1
Контактные данные: 12
Научная статья: 1388
Не заполнено: 5
Новостная статья: 317
Обзор технологии: 42
Патент: 219
Тех.подробности: 34
Тип: 1
Комментариев: 6,715
Изображений: 3,005
Подробней...
ТОР 10 аналитиков
-
Глаголева Елена - 591
Дмитрий Соловьев - 459
Helix - 218
Ридна Украина))) - 85
Наталья Черкасова - 81
max-orduan - 29
Елена Токай - 15
Роман Михайлов - 9
Мансур Жигануров - 4
Дуванова Татьяна - 3
Календарь
Пн | Вт | Ср | Чт | Пт | Сб | Вс |
---|---|---|---|---|---|---|
« Ноя | ||||||
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
Авторизация
Ошибка в тексте?
Выдели её мышкой!
И нажми Ctrl+Enter