Архив категории Найдено в базе

Mechanics and energetics of incline walking with robotic ankle exoskeletons

Дата: Октябрь 24th, 2008 Автор:
+ Показать свойства документа
  • Тип контента: Научная статья
  • Номер документа: 7723
  • Название документа: Mechanics and energetics of incline walking with robotic ankle exoskeletons
  • Номер (DOI, IBSN, Патент): 10.1242/jeb.017277
  • Изобретатель/автор: Gregory S. Sawicki, Daniel P. Ferris
  • Правопреемник/учебное заведение: Human Neuromechanics Laboratory, University of Michigan-Ann Arbor
  • Дата публикации документа: 2008-10-24
  • Страна опубликовавшая документ: США
  • Язык документа: Английский
  • Наименование изделия: Не заполнено
  • Источник: The Journal of Experimental Biology 212, 32-41
  • Вложения: Да
  • Аналитик: Глаголева Елена

We examined healthy human subjects wearing robotic ankle exoskeletons to study the metabolic cost of ankle muscle–tendon work during uphill walking. The exoskeletons were powered by artificial pneumatic muscles and controlled by the user’s soleus electromyography. We hypothesized that as the demand for net positive external mechanical work increased with surface gradient, the positive work delivered by ankle exoskeletons would produce greater reductions in users’ metabolic cost. Nine human subjects walked at 1.25ms–1 on gradients of 0%, 5%, 10% and 15%. We compared rates of O2 consumption and CO2 production, exoskeleton mechanics, joint kinematics, and surface electromyography between unpowered and powered exoskeleton conditions. On steeper inclines, ankle exoskeletons delivered more average positive mechanical power (P<0.0001; +0.37±0.03Wkg–1 at 15% grade and +0.23±0.02Wkg–1 at 0% grade) and reduced subjects’ net metabolic power by more (P<0.0001; –0.98±0.12Wkg–1 at 15% grade and –0.45±0.07Wkg–1 at 0% grade). Soleus muscle activity was reduced by 16–25% when wearing powered exoskeletons on all surface gradients (P<0.0008). The ‘apparent efficiency’ of ankle muscle–tendon mechanical work decreased from 0.53 on level ground to 0.38 on 15% grade. This suggests a decreased contribution from previously stored Achilles’ tendon elastic energy and an increased contribution from actively shortening ankle plantar flexor muscle fibers to ankle muscle–tendon positive work during walking on steep uphill inclines. Although exoskeletons delivered 61% more mechanical work at the ankle up a 15% grade compared with level walking, relative reductions in net metabolic power were similar across surface gradients (10–13%). These results suggest a shift in the relative distribution of mechanical power output to more proximal (knee and hip) joints during inclined walking.

(далее…)

Категория: Научные статьи | Нет комментариев »


Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency

Дата: Октябрь 24th, 2008 Автор:
+ Показать свойства документа
  • Тип контента: Научная статья
  • Номер документа: 7720
  • Название документа: Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency
  • Номер (DOI, IBSN, Патент): 10.1242/jeb.017269
  • Изобретатель/автор: Gregory S. Sawicki, Daniel P. Ferris
  • Правопреемник/учебное заведение: Human Neuromechanics Laboratory, University of Michigan at Ann Arbor
  • Дата публикации документа: 2008-10-24
  • Страна опубликовавшая документ: США
  • Язык документа: Английский
  • Наименование изделия: Не заполнено
  • Источник: The Journal of Experimental Biology 212, 21-31
  • Вложения: Да
  • Аналитик: Глаголева Елена

We examined the metabolic cost of plantar flexor muscle–tendon mechanical work during human walking. Nine healthy subjects walked at constant step frequency on a motorized treadmill at speeds corresponding to 80% (1.00ms–1), 100% (1.25ms–1), 120% (1.50ms–1) and 140% (1.75ms–1) of their preferred step length (L*) at 1.25ms–1. In each condition subjects donned robotic ankle exoskeletons on both legs. The exoskeletons were powered by artificial pneumatic muscles and controlled using soleus electromyography (i.e. proportional myoelectric control). We measured subjects’ metabolic energy expenditure and exoskeleton mechanics during both unpowered and powered walking to test the hypothesis that ankle plantarflexion requires more net metabolic power (Wkg–1) at longer step lengths for a constant step frequency (i.e. preferred at 1.25ms–1). As step length increased from 0.8 L to 1.4 L, exoskeletons delivered ~25% more average positive mechanical power (P=0.01; +0.20±0.02Wkg–1 to +0.25±0.02Wkg–1, respectively). The exoskeletons reduced net metabolic power by more at longer step lengths (P=0.002; –0.21±0.06Wkg–1 at 0.8 L* and –0.70±0.12Wkg–1 at 1.4 L*). For every 1 J of exoskeleton positive mechanical work subjects saved 0.72 J of metabolic energy (‘apparent efficiency’=1.39) at 0.8 L and 2.6 J of metabolic energy (‘apparent efficiency’=0.38) at 1.4 L. Declining ankle muscle–tendon ‘apparent efficiency’ suggests an increase in ankle plantar flexor muscle work relative to Achilles’ tendon elastic energy recoil during walking with longer steps. However, previously stored elastic energy in Achilles’ tendon still probably contributes up to 34% of ankle muscle–tendon positive work even at the longest step lengths we tested. Across the range of step lengths we studied, the human ankle muscle–tendon system performed 34–40% of the total lower-limb positive mechanical work but accounted for only 7–26% of the net metabolic cost of walking.

(далее…)

Категория: Научные статьи | Нет комментариев »


Pinpointed Muscle Force Control Using a Power-assisting Device: System Configuration and Experiment

Дата: Октябрь 22nd, 2008 Автор:
+ Показать свойства документа
  • Тип контента: Научная статья
  • Номер документа: 6737
  • Название документа: Pinpointed Muscle Force Control Using a Power-assisting Device: System Configuration and Experiment
  • Номер (DOI, IBSN, Патент): Не заполнено
  • Изобретатель/автор: Ming Ding, Jun Ueda, Tsukasa Ogasawara
  • Правопреемник/учебное заведение: Nara Institute of Science and technology
  • Дата публикации документа: 2008-10-22
  • Страна опубликовавшая документ: США
  • Язык документа: Английский
  • Наименование изделия: Не заполнено
  • Источник: Proceedings of the 2nd Biennial IEEE/RAS-EMBS International
  • Вложения: Да
  • Аналитик: Глаголева Елена

The demand for rehabilitation robots is increasing for the upcoming aging society. Power-assisting devices are considered promising for enhancing the mobility of elderly and disabled people. Other potential applications are for muscle rehabilitation and sports training. The main focus of this paper is to control the load of selected muscles by using a power-assisting device, thus enabling “pinpointed” motion support, rehabilitation, and training by explicitly specifying the target muscles. By taking into account the physical interaction between human muscle forces and actuator drivingforces during power-assisting, the feasibility of this muscle force control is analyzed as a constrained optimization problem. A prototype power-assisting device driven by pneumatic rubber actuators is developed. A control system is developed with a graphical user interface that provides an easy operation to designate desired forces for target muscles. The validity of the method is confirmed by experiments by measuring surface electromyographic (EMG) signals for target muscles.

(далее…)

Категория: Научные статьи | Нет комментариев »


Rehabilitation supporting device

Дата: Октябрь 16th, 2008 Автор:
+ Показать свойства документа
  • Тип контента: Патент
  • Номер документа: 4936
  • Название документа: Rehabilitation supporting device
  • Номер (DOI, IBSN, Патент): WO2008123040
  • Изобретатель/автор: Sankai, Y.
  • Правопреемник/учебное заведение: Univ. of Tsukuba, Japan
  • Дата публикации документа: 2008-10-16
  • Страна опубликовавшая документ: Япония
  • Язык документа: Японский
  • Наименование изделия: Не заполнено
  • Источник: http://www.wipo.int/patentscope/search/en/WO2008123040
  • Вложения: Да
  • Аналитик: Дмитрий Соловьев

(EN)Provided is a rehabilitation supporting device (1) comprising a first frame (11) to be mounted along a first skeleton extending from an articulation, a second frame (12) to be mounted along a second skeleton extending from an articulation in a direction different from that of the first skeleton, an angle sensor (131) for detecting a rotational angle position between the first frame and the second frame, a bent-side biological signal sensor (14) for detecting the biological signal of a flexor, an extended-side biological signal sensor (15) for detecting the biological signal of an extensor, calibration means (31) for setting a bent-side correction value and an extended-side correction value individually, and a storage unit (34) for storing the individual correction values of the biological signals different for individuals, the bent-side correction value and the extended-side correction value.
(далее…)

Категория: Патенты | Нет комментариев »


Design of a quasi-passive knee exoskeleton to assist running

Дата: Октябрь 14th, 2008 Автор:
+ Показать свойства документа
  • Тип контента: Научная статья
  • Номер документа: 693
  • Название документа: Design of a quasi-passive knee exoskeleton to assist running
  • Номер (DOI, IBSN, Патент): 10.1109/IROS.2008.4651202
  • Изобретатель/автор: Herr, H., Dollar, A.M.
  • Правопреемник/учебное заведение: MIT Media Lab., Massachusetts Inst. of Technol., Cambridge, MA
  • Дата публикации документа: 2008-10-14
  • Страна опубликовавшая документ: Не заполнено
  • Язык документа: Английский
  • Наименование изделия: Не заполнено
  • Источник: http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&a
  • Вложения: Да
  • Аналитик: Дмитрий Соловьев

In this paper we describe the design and preliminary evaluation of an energetically-autonomous powered knee exoskeleton to facilitate running. The device consists of a knee brace in which a motorized mechanism actively places and removes a spring in parallel with the knee joint. This mechanism is controlled such that the spring is in parallel with the knee joint from approximately heel-strike to toe-off, and is removed from this state during the swing phase of running. In this way, the spring is intended to store energy at heel-strike which is then released when the heel leaves the ground, reducing the effort required by the quadriceps to exert this energy, thereby reducing the metabolic cost of running.

(далее…)

Категория: Научные статьи | Нет комментариев »