Archive for Декабрь 31st, 2009
On the Enhancement of EMG-Driven Neuromuscular Models For the Runtime Control of Powered Orthosis
- Тип контента: Научная статья
- Номер документа: 7219
- Название документа: On the Enhancement of EMG-Driven Neuromuscular Models For the Runtime Control of Powered Orthosis
- Номер (DOI, IBSN, Патент): Не заполнено
- Изобретатель/автор: Massimo Sartori, David G. Lloyd, Monica Reggiani, Elena Ceseracciu, Zimi Sawacha, Enrico Pagello, Claudio Cobelli
- Правопреемник/учебное заведение: Università di Padova, University of Western Australia
- Дата публикации документа: 2009-12-31
- Страна опубликовавшая документ: Австралия, Италия
- Язык документа: Английский
- Наименование изделия: Не заполнено
- Источник: Не заполнено
- Вложения: Да
- Аналитик: Глаголева Елена
The availability of accurate and comprehensive models of human limbs, combining high reliability and real-time operation, is required to develop seamless and intuitive human-machine interfaces. Biomechanist have developed complex models of the human lower limb, combining kinematics and kinetics data with neural signals for the purpose of studying human motor control strate-gies. The complexity prevent their application to situations with stringent real-time requirements. We are currently working on the enhancement of an EMG-driven model of the human lower extremity to achieve compre-hensiveness, accuracy, and fast runtime execution. Starting from the very complex model developed by Lloyd et al. we have evaluated how this model can be enhanced to achieve higher performances in terms of compu-tation time with no loss of prediction accuracy. The enhanced model will be applied to the control of powered orthosis and to the development of advanced biomimetic control systems for humanoids robots. We started our investigation with the analysis of the impact of modeling the tendon as an infinitely stiff body and quantitatively evaluated the changes in the behavior of the modified model w.r.t. the original one. We also integrated a runtime anatomical model that allowed to execute the whole EMG-driven model at runtime. This is a significant improvement as the previous available model could not entirely be executed at runtime due to the complexity of the original anatomical model.
Категория: Научные статьи | Нет комментариев »
A Passive-Elastic Ankle Exoskeletion Using Controlled Energy Storage and Release
- Тип контента: Научная статья
- Номер документа: 6161
- Название документа: A Passive-Elastic Ankle Exoskeletion Using Controlled Energy Storage and Release
- Номер (DOI, IBSN, Патент): Не заполнено
- Изобретатель/автор: Steven H. Collins, Gregory S. Sawicki, Bruce Wiggin
- Правопреемник/учебное заведение: University of North Carolina-Chapel Hill,, Delft University of Technology, Carolina State University
- Дата публикации документа: 2009-12-31
- Страна опубликовавшая документ: Не заполнено
- Язык документа: Английский
- Наименование изделия: Не заполнено
- Источник: Не заполнено
- Вложения: Да
- Аналитик: Глаголева Елена
A major goal of powered lower-limb exoskeletons is to act in parallel with the user’s leg muscles and reduce metabolic energy con-sumption during locomotion. Recent designs have focused on portable devices that can mimic the normal torque output of the lower-limb joints over the full gait cycle using large, powerful motors under high gain force control. Powerful motors are heavy, require bulky gears and mounting frames, and rely on even larger power sources. Furthermore, we are unaware of any study to date that de-monstrates a metabolic savings during walking with a portable lower-limb exoskeleton. On the other hand, a recent study indicates that when humans don tethered (i.e. nonportable), bilateral, lightweight, pneumatically powered ankle exoskeletons that replace only ~63% of the ankle muscletendon mechanical work during push-off, they reduce their metabolic energy consumption by 10-12% du-ring treadmill walking . Thus, supplying mechanical energy at a single joint (i.e. the ankle) during a key propulsive phase of wal-king (i.e. pushoff) can have appreciable metabolic benefits. Our goal in this study was to develop a portable device capable of providing ankle joint mechanical assistance during walking without using external power from onboard actuators (i.e. an ‘energy-neutral’ solution). Human walkers exploit a key passive dynamic principle of locomotion: elastic energy storage and return. Early in stance, strain energy is stored in the Achilles’ tendon and then it is recovered later, providing up to 60% of the ankle joint mechanical work during push-off . We hypothesize that a passive wearable device using parallel elastic elements during the walking cycle is capable of recycling a significant portion of the ankle joint mechanical work and could reduce the metabolic cost of walking by up to 18% .
Категория: Научные статьи | Нет комментариев »
Motion Control of Wearable Walking Support System with Accelerometer Based on Human Model
- Тип контента: Научная статья
- Номер документа: 7474
- Название документа: Motion Control of Wearable Walking Support System with Accelerometer Based on Human Model
- Номер (DOI, IBSN, Патент): 978-953-307-020-9
- Изобретатель/автор: Yasuhisa Hirata, Takuya Iwano, Masaya Tajika, Kazuhiro Kosuge
- Правопреемник/учебное заведение: Department of Bioengineering and Robotics, Tohoku University Japan
- Дата публикации документа: 2009-12-31
- Страна опубликовавшая документ: Япония
- Язык документа: Английский
- Наименование изделия: Не заполнено
- Источник: Advances in Human-Robot Interaction, Book edited by: Vladimi
- Вложения: Да
- Аналитик: Глаголева Елена
Many countries of the world including Japan will become a full-fledged aged society. According to report in Japan, the elderly population aged 65 years or over in Japan will number 33 million and will account for more than 25 percent of the population. We have to support the elderly for independence in old age so that a variety of lifestyles is possible. With the development of the robot technologies, robotics researchers have developed various kinds of human assist robot such as walking aid system and manipulation aid system for supporting the elderly.
Категория: Научные статьи | Нет комментариев »
Motion Primitives for Human-Inspired Bipedal Robotic Locomotion: Walking and Stair Climbing
- Тип контента: Научная статья
- Номер документа: 7056
- Название документа: Motion Primitives for Human-Inspired Bipedal Robotic Locomotion: Walking and Stair Climbing
- Номер (DOI, IBSN, Патент): Не заполнено
- Изобретатель/автор: Matthew J. Powell, Huihua Zhao, Aaron D. Ames
- Правопреемник/учебное заведение: Department of Mechanical Engineering, Texas A&M University
- Дата публикации документа: 2009-12-31
- Страна опубликовавшая документ: США
- Язык документа: Английский
- Наименование изделия: Не заполнено
- Источник: Не заполнено
- Вложения: Да
- Аналитик: Глаголева Елена
This paper presents an approach to the development of bipedal robotic control techniques for multiple locomotion behaviors. Insight into the fundamental behaviors of human loco-motion is obtained through the examination of experimental human data for walking on flat ground, upstairs and downstairs. Specifically, it is shown that certain outputs of the human, independent of locomotion ter-rain, can be characterized by a single function, termed the extended canonical human function. Optimized functions of this form are tracked via feedback linearization in simulations of a planar robotic biped walking on flat ground, upstairs and downstairs — these three modes of locomotion are termed “motion primi-tives.” A second optimization is presented, which yields controllers that evolve the robot from one motion primitive to another — these modes of locomotion are termed “motion transitions.” A final simulation is given, which shows the controlled evolution of a robotic biped as it transitions through each mode of loco-motion over a pyramidal staircase.
Категория: Научные статьи | Нет комментариев »
A spring in your step: some is good, more is not always better
- Тип контента: Научная статья
- Номер документа: 7471
- Название документа: A spring in your step: some is good, more is not always better
- Номер (DOI, IBSN, Патент): 10.1152/japplphysiol.00672.2009.
- Изобретатель/автор: Chet T. Moritz
- Правопреемник/учебное заведение: Department of Physiology and Biophysics and Washington National Primate Research Center, University of Washington, Seattle, Washington
- Дата публикации документа: 2009-12-31
- Страна опубликовавшая документ: США
- Язык документа: Английский
- Наименование изделия: Не заполнено
- Источник: J Appl Physiol 107: 643–644, 2009;
- Вложения: Да
- Аналитик: Глаголева Елена
WHEN HUMANS AND OTHER ANIMALS run and hop, they operate with muscle efficiencies nearly twice those observed during cycling. This “free energy” is due to the storage and return of elastic energy in muscles and tendons during the stretch-shorten cycles of landing and takeoff. If spring-like tendons and muscles can save substantial energy, could artificial springs added to the legs further reduce the metabolic costof locomotion?
Категория: Научные статьи | Нет комментариев »
Статистика
Категорий: 179
Статей всего: 2,003
По типу:
Видео: 36
Выдержка с форума: 1
Контактные данные: 12
Научная статья: 1388
Не заполнено: 5
Новостная статья: 317
Обзор технологии: 42
Патент: 219
Тех.подробности: 34
Тип: 1
Комментариев: 6,719
Изображений: 3,005
Подробней...
ТОР 10 аналитиков
-
Глаголева Елена - 591
Дмитрий Соловьев - 459
Helix - 218
Ридна Украина))) - 85
Наталья Черкасова - 81
max-orduan - 29
Елена Токай - 15
Роман Михайлов - 9
Мансур Жигануров - 4
Дуванова Татьяна - 3
Календарь
Авторизация
Ошибка в тексте?
Выдели её мышкой!
И нажми Ctrl+Enter