EMG Signal Classification for Human Computer Interaction: A Review
- Тип контента: Научная статья
- Номер документа: 7283
- Название документа: EMG Signal Classification for Human Computer Interaction: A Review
- Номер (DOI, IBSN, Патент): ISSN 1450-216X
- Изобретатель/автор: Othman O. Khalifa, Muhammad I. Ibrahimy, Md. R. Ahsan
- Правопреемник/учебное заведение: Electrical & Computer Engineering Department Kulliyyah of Engineering, International Islamic University Kuala Lumpur
- Дата публикации документа: 2009-03-19
- Страна опубликовавшая документ: Малайзия
- Язык документа: Английский
- Наименование изделия: Не заполнено
- Источник: European Journal of Scientific Research
- Вложения: Да
- Аналитик: Глаголева Елена
With the ever increasing role of computerized machines in society, Human Computer Interaction (HCI) system has become an increasingly important part of our daily lives. HCI determines the effective utilization of the available information flow of the computing, communication, and display technologies. In recent years, there has been a tremendous interest in introducing intuitive interfaces that can recognize the user’s body movements and translate them into machine commands. For the neural linkage with computers, various biomedical signals (biosignals) can be used, which can be acquired from a specialized tissue, organ, or cell system like the nervous system. Examples include Electro-Encepha-logram (EEG), Electrooculogram (EOG), and Electromyogram (EMG). Such approaches are extremely valuable to physically disabled persons. Many attempts have been made to use EMG signal from gesture for developing HCI. EMG signal processing and controller work is currently proceeding in various direction including the development of continuous EMG signal classification for graphical controller, that enables the physically disabled to use word processing programs and other personal computer software, internet. It also enable manipulation of robotic devices, prosthesis limb, I/O for virtual reality games, physical exercise equipments etc. Most of the developmental area is based on pattern recognition using neural networks. The EMG controller can be programmed to perform gesture recognition based on signal analysis of groups of muscles action potential. This review paper is to discuss the various methodologies and algorithms used for EMG signal classification for the purpose of interpreting the EMG signal into computer command.
Категория: Научные статьи | Нет комментариев »
Комментарии
Статистика
Категорий: 179
Статей всего: 2,003
По типу:
Видео: 36
Выдержка с форума: 1
Контактные данные: 12
Научная статья: 1388
Не заполнено: 5
Новостная статья: 317
Обзор технологии: 42
Патент: 219
Тех.подробности: 34
Тип: 1
Комментариев: 6,672
Изображений: 3,005
Подробней...
ТОР 10 аналитиков
-
Глаголева Елена - 591
Дмитрий Соловьев - 459
Helix - 218
Ридна Украина))) - 85
Наталья Черкасова - 81
max-orduan - 29
Елена Токай - 15
Роман Михайлов - 9
Мансур Жигануров - 4
Дуванова Татьяна - 3
Календарь
Авторизация
Ошибка в тексте?
Выдели её мышкой!
И нажми Ctrl+Enter