Archive for Ноябрь 1st, 2006

The Effects of a Lower Body Exoskeleton Load Carriage Assistive Device on Oxygen Consumption and Kinematics During Walking with Loads

Дата: Ноябрь 1st, 2006 Автор:
+ Показать свойства документа
  • Тип контента: Научная статья
  • Номер документа: 3544
  • Название документа: The Effects of a Lower Body Exoskeleton Load Carriage Assistive Device on Oxygen Consumption and Kinematics During Walking with Loads
  • Номер (DOI, IBSN, Патент): A107184
  • Изобретатель/автор: Schiffman J.M., Obusek J.P., Hasselquist L., Gutekunst D., Gregorczyk K.N., Frykman P., Bensel C.K.
  • Правопреемник/учебное заведение: U.S. Army Natick Soldier Center, Natick, MA, USA
  • Дата публикации документа: 2006-11-01
  • Страна опубликовавшая документ: США
  • Язык документа: Английский
  • Наименование изделия: Не заполнено
  • Источник: http://www.stormingmedia.us/10/1071/A107184.html
  • Вложения: Да
  • Аналитик: Дмитрий Соловьев

The purpose of this study was to investigate the metabolic cost of wearing a prototype exoskeleton (EXO) while walking with a range of heavy loads, and to analyze the associated gait biomechanics. Ten Army enlisted men participated in the study. Oxygen consumption (VO2) and gait biomechanics were measured while Soldiers walked at 4.83 km/h and 0% grade under three realistic load weight configurations that were comprised of Army clothing and equipment: fighting load (20 kg), approach march load (40 kg), and emergency approach march load (55 kg). The volunteers were tested under all load configurations with and without wearing the EXO prototype. Mean VO2 significantly increased while wearing the EXO compared to not wearing the EXO across all conditions. Mean VO2 scaled to body mass and scaled to total mass also significantly increased while wearing the EXO. Mean VO2 and mean VO2 scaled to body mass significantly increased with load, however, there were no significant EXO by load interaction effects for both the non-scaled and scaled VO2. The kinematic and kinetic data revealed significant changes when wearing EXO compared to not wearing EXO. In summary, volunteers walked with shorter and faster strides; maintained a more flexed posture with reduced movement at the individual leg joints; braked with higher ground reaction forces at heel strike; and pushed off with lower force at toe off. This study demonstrated that use of an exoskeleton prototype increases users’ metabolic cost while carrying various loads and alters their gait biomechanics compared to conventional load carriage using a backpack.

(далее…)

Категория: Научные статьи | Нет комментариев »


The effects of a lower body exoskeleton load carriage assistive device on limits of stability and postural sway

Дата: Ноябрь 1st, 2006 Автор:
+ Показать свойства документа
  • Тип контента: Научная статья
  • Номер документа: 3541
  • Название документа: The effects of a lower body exoskeleton load carriage assistive device on limits of stability and postural sway
  • Номер (DOI, IBSN, Патент): 10.1080/00140130802248084
  • Изобретатель/автор: Schiffman J.M., Obusek J.P., Hasselquist L., Gregorczyk K.N., Bensel C.K.
  • Правопреемник/учебное заведение: U.S. Army Natick Soldier Center, Natick, MA, USA
  • Дата публикации документа: 2006-11-01
  • Страна опубликовавшая документ: США
  • Язык документа: Английский
  • Наименование изделия: Не заполнено
  • Источник: http://www.tandfonline.com/doi/abs/10.1080/00140130802248084
  • Вложения: Да
  • Аналитик: Дмитрий Соловьев

The study investigated the effects of using a lower body prototype exoskeleton (EXO) on static limits of stability and postural sway. Measurements were taken with participants, 10 US Army enlisted men, standing on a force platform. The men were tested with and without the EXO (15 kg) while carrying military loads of 20, 40 and 55 kg. Body lean to the left and right was significantly less and postural sway excursions and maximal range of movement were significantly reduced when the EXO was used. Hurst values indicated that body sway was less random over short-term time intervals and more random over long-term intervals with the EXO than without it. Feedback to the user’s balance control mechanisms most likely was changed with the EXO. The reduced sway and relatively small changes in sway with increasing load weights suggest that the EXO structure may have functioned to provide a bracing effect on the body.

(далее…)

Категория: Научные статьи | Нет комментариев »