Archive for Июль 16th, 2004
An EMG-Controlled Hand Exoskeleton for Natural Pinching
- Тип контента: Научная статья
- Номер документа: 6566
- Название документа: An EMG-Controlled Hand Exoskeleton for Natural Pinching
- Номер (DOI, IBSN, Патент): Не заполнено
- Изобретатель/автор: Lenny Lucas, Matthew DiCicco, Yoky Matsuoka
- Правопреемник/учебное заведение: Carnegie Mellon University, Pittsburgh
- Дата публикации документа: 2004-07-16
- Страна опубликовавшая документ: США
- Язык документа: Английский
- Наименование изделия: Не заполнено
- Источник: Journal of Robotics and Mechatronics Vol.16 No.5, 2004
- Вложения: Да
- Аналитик: Глаголева Елена
Spinal cord and other local injuries often lead to partial paralysis while the brain stays fully functional. When this partial paralysis occurs in the hand, these individuals are not able to execute daily activities on their own even if their arms are functional. To remedy this problem, a lightweight, low-profile orthotic exoskeleton has been designed to restore dexterity to paralyzed hands. The exoskeleton’s movements are controlled by the user’s available electro-myography (EMG) signals. The device has two actuators controlling the index finger flexion that can be used to perform a pinching motion against a fixed thumb. Using this orthotic device, a new control tech-nique was developed to allow for a natural reaching and pinching sequence by utilizing the natural resi-dual muscle activation patterns. To design this controller, two actuator control algorithms were explored with a quadriplegic (C5/C6) subject and it was determined that a simple binary control algorithm allowed for faster interaction with objects over a variable control algorithm. The binary algorithm was then used as an enabling algorithm to activate the exoskeleton movements when the natural sequence of muscle activi-ties found a pattern related to a pinch. This natural pinching technique has shown significant promise to-ward realistic neural control of wearable robotic devices to assist paralyzed individuals.
Категория: Научные статьи | Нет комментариев »
Статистика
Категорий: 179
Статей всего: 2,003
По типу:
Видео: 36
Выдержка с форума: 1
Контактные данные: 12
Научная статья: 1388
Не заполнено: 5
Новостная статья: 317
Обзор технологии: 42
Патент: 219
Тех.подробности: 34
Тип: 1
Комментариев: 6,672
Изображений: 3,005
Подробней...
ТОР 10 аналитиков
-
Глаголева Елена - 591
Дмитрий Соловьев - 459
Helix - 218
Ридна Украина))) - 85
Наталья Черкасова - 81
max-orduan - 29
Елена Токай - 15
Роман Михайлов - 9
Мансур Жигануров - 4
Дуванова Татьяна - 3
Календарь
Авторизация
Ошибка в тексте?
Выдели её мышкой!
И нажми Ctrl+Enter