http://myexs.ru/wp-content/themes/multiflex-4-10/img/header.gif
http://myexs.ru/wp-content/themes/multiflex-4-10/img/bg30.jpg

Performances of Hill-Type and Neural Network Muscle Models—Toward a Myosignal-Based Exoskeleton

Дата: Декабрь 31st, 1999 Автор:
+ Показать свойства документа
  • Тип контента: Научная статья
  • Номер документа: 7248
  • Название документа: Performances of Hill-Type and Neural Network Muscle Models—Toward a Myosignal-Based Exoskeleton
  • Номер (DOI, IBSN, Патент): Не заполнено
  • Изобретатель/автор: Jacob Rosen, Moshe B. Fuchs, Mircea Arcan
  • Правопреемник/учебное заведение: Tel Aviv University
  • Дата публикации документа: 1999-12-31
  • Страна опубликовавшая документ: Израиль
  • Язык документа: Английский
  • Наименование изделия: Не заполнено
  • Источник: Computers and Biomedical Research 32, 415–439 (1999)
  • Вложения: Да
  • Аналитик: Глаголева Елена

Muscle models are the essential components of any musculoskeletal simulation. In addition, muscle models which are incorporated in neural-based prosthetic and orthotic devices may significantly improve their performance. The aim of the study was to compare the performances of two types of muscle models in terms of predicting the moments developed at the human elbow joint complex based on joint kinematics and neuromuscular activity. The performance evaluation of the muscle models was required to implement them in a powered myosignaldriven exoskeleton (orthotic device). The experimental setup included a passive exoskeleton capable of measuring the joint kinematics and dynamics in addition to the muscle myosignal activity (EMG). Two types of models were developed and analyzed: a Hill-based model and a neural network. The task, which was selected for evaluating the muscle models performance, was the flexion–extension movement of the forearm with a hand-held weight. For this task the muscle model inputs were the normalized neural activation levels of the four main flexor–extensor muscles of the elbow joint, and the elbow joint angle and angular velocity. Using this inputs, the muscle model predicted the moment applied on the elbow joint during the movement. Results indicated a good performance of the Hill model, although the neural network predictions appeared to be superior. Relative advantages and shortcomings of both approaches were presented and discussed.

Категория: Научные статьи | Нет комментариев »

Комментарии

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *


Статистика

Категорий: 179
Статей всего: 2,003
По типу:
 Видео: 36
 Выдержка с форума: 1
 Контактные данные: 12
 Научная статья: 1388
 Не заполнено: 5
 Новостная статья: 317
 Обзор технологии: 42
 Патент: 219
 Тех.подробности: 34
 Тип: 1
Комментариев: 6,635
Изображений: 3,005
Подробней...

ТОР 10 аналитиков

    Глаголева Елена - 591
    Дмитрий Соловьев - 459
    Helix - 218
    Ридна Украина))) - 85
    Наталья Черкасова - 81
    max-orduan - 29
    Елена Токай - 15
    Роман Михайлов - 9
    Мансур Жигануров - 4
    Дуванова Татьяна - 3

Календарь

  • Декабрь 1999
    Пн Вт Ср Чт Пт Сб Вс
    « Окт   Июн »
     12345
    6789101112
    13141516171819
    20212223242526
    2728293031  
  • Авторизация

    Ошибка в тексте?

    Выдели её мышкой!

    И нажми Ctrl+Enter